IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v392y2013i9p2226-2234.html
   My bibliography  Save this article

Minimal spanning tree problem in stock networks analysis: An efficient algorithm

Author

Listed:
  • Djauhari, Maman Abdurachman
  • Gan, Siew Lee

Abstract

Since the last decade, minimal spanning trees (MSTs) have become one of the main streams in econophysics to filter the important information contained, for example, in stock networks. The standard practice to find an MST is by using Kruskal’s algorithm. However, it becomes slower and slower when the number of stocks gets larger and larger. In this paper we propose an algorithm to find an MST which has considerably promising performance. It is significantly faster than Kruskal’s algorithm and far faster if there is only one unique MST in the network. Our approach is based on the combination of fuzzy relation theory and graph theoretical properties of the forest of all MSTs. A comparison study based on real data from four stock markets and four types of simulated data will be presented to illustrate the significant advantages of the proposed algorithm.

Suggested Citation

  • Djauhari, Maman Abdurachman & Gan, Siew Lee, 2013. "Minimal spanning tree problem in stock networks analysis: An efficient algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2226-2234.
  • Handle: RePEc:eee:phsmap:v:392:y:2013:i:9:p:2226-2234
    DOI: 10.1016/j.physa.2012.12.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437113000095
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & N. Mantegna, Rosario, 2003. "Degree stability of a minimum spanning tree of price return and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 66-73.
    2. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    3. Djauhari, Maman A., 2012. "A robust filter in stock networks analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5049-5057.
    4. Yiting Zhang & Gladys Hui Ting Lee & Jian Cheng Wong & Jun Liang Kok & Manamohan Prusty & Siew Ann Cheong, 2010. "Will the US Economy Recover in 2010? A Minimal Spanning Tree Study," Papers 1009.5800, arXiv.org, revised Dec 2010.
    5. Ulusoy, Tolga & Keskin, Mustafa & Shirvani, Ayoub & Deviren, Bayram & Kantar, Ersin & Çaǧrı Dönmez, Cem, 2012. "Complexity of major UK companies between 2006 and 2010: Hierarchical structure method approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5121-5131.
    6. Cieslik, Dietmar, 2000. "The vertex degrees of minimum spanning trees," European Journal of Operational Research, Elsevier, vol. 125(2), pages 278-282, September.
    7. Cheoljun Eom & Gabjin Oh & Seunghwan Kim, 2006. "Topological Properties of the Minimal Spanning Tree in Korean and American Stock Markets," Papers physics/0612068, arXiv.org, revised Jan 2007.
    8. Murad S. Taqqu, 2001. "Bachelier and his times: A conversation with Bernard Bru," Finance and Stochastics, Springer, vol. 5(1), pages 3-32.
    9. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    10. Tola, Vincenzo & Lillo, Fabrizio & Gallegati, Mauro & Mantegna, Rosario N., 2008. "Cluster analysis for portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 235-258, January.
    11. Wang, Gang-Jin & Xie, Chi & Han, Feng & Sun, Bo, 2012. "Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(16), pages 4136-4146.
    12. Tabak, Benjamin M. & Serra, Thiago R. & Cajueiro, Daniel O., 2010. "Topological properties of stock market networks: The case of Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3240-3249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    2. Haishu Qiao & Yue Xia & Ying Li, 2016. "Can Network Linkage Effects Determine Return? Evidence from Chinese Stock Market," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-25, June.
    3. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    4. Xin Yang & Shan Chen & Hong Liu & Xiaoguang Yang & Chuangxia Huang, 2023. "Jump volatility spillover network based measurement of systemic importance of Chinese financial institutions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1201-1213, April.
    5. Samuel Ugwu & Pierre Miasnikof & Yuri Lawryshyn, 2023. "Distance Correlation Market Graph: The Case of S&P500 Stocks," Mathematics, MDPI, vol. 11(18), pages 1-13, September.
    6. Nguyen, Q. & Nguyen, N.K. K. & Nguyen, L.H. N., 2019. "Dynamic topology and allometric scaling behavior on the Vietnamese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 235-243.
    7. Kalyagin, V.A. & Koldanov, A.P. & Koldanov, P.A. & Pardalos, P.M. & Zamaraev, V.A., 2014. "Measures of uncertainty in market network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 59-70.
    8. Kazemilari, Mansooreh & Djauhari, Maman Abdurachman, 2015. "Correlation network analysis for multi-dimensional data in stocks market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 62-75.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djauhari, Maman Abdurachman & Gan, Siew Lee, 2015. "Optimality problem of network topology in stocks market analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 108-114.
    2. Gautier Marti & Frank Nielsen & Miko{l}aj Bi'nkowski & Philippe Donnat, 2017. "A review of two decades of correlations, hierarchies, networks and clustering in financial markets," Papers 1703.00485, arXiv.org, revised Nov 2020.
    3. Kazemilari, Mansooreh & Mardani, Abbas & Streimikiene, Dalia & Zavadskas, Edmundas Kazimieras, 2017. "An overview of renewable energy companies in stock exchange: Evidence from minimal spanning tree approach," Renewable Energy, Elsevier, vol. 102(PA), pages 107-117.
    4. A. Q. Barbi & G. A. Prataviera, 2017. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Papers 1711.06185, arXiv.org, revised May 2019.
    5. Barbi, A.Q. & Prataviera, G.A., 2019. "Nonlinear dependencies on Brazilian equity network from mutual information minimum spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 876-885.
    6. Deviren, Seyma Akkaya & Deviren, Bayram, 2016. "The relationship between carbon dioxide emission and economic growth: Hierarchical structure methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 429-439.
    7. Millington, Tristan & Niranjan, Mahesan, 2021. "Construction of minimum spanning trees from financial returns using rank correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    8. Yao, Hongxing & Memon, Bilal Ahmed, 2019. "Network topology of FTSE 100 Index companies: From the perspective of Brexit," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1248-1262.
    9. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    10. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    11. Radhakrishnan, Srinivasan & Duvvuru, Arjun & Sultornsanee, Sivarit & Kamarthi, Sagar, 2016. "Phase synchronization based minimum spanning trees for analysis of financial time series with nonlinear correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 259-270.
    12. Sensoy, Ahmet & Tabak, Benjamin M., 2014. "Dynamic spanning trees in stock market networks: The case of Asia-Pacific," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 387-402.
    13. Buscema, Massimo & Sacco, Pier Luigi, 2016. "MST Fitness Index and implicit data narratives: A comparative test on alternative unsupervised algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 726-746.
    14. Tristan Millington & Mahesan Niranjan, 2020. "Construction of Minimum Spanning Trees from Financial Returns using Rank Correlation," Papers 2005.03963, arXiv.org, revised Nov 2020.
    15. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    16. Bilal Ahmed Memon & Hongxing Yao & Rabia Tahir, 2020. "General election effect on the network topology of Pakistan’s stock market: network-based study of a political event," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    17. Djauhari, Maman A., 2012. "A robust filter in stock networks analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 5049-5057.
    18. Mansooreh Kazemilari & Ali Mohamadi, 2018. "Topological Network Analysis Based on Dissimilarity Measure of Multivariate Time Series Evolution in the Subprime Crisis," IJFS, MDPI, vol. 6(2), pages 1-16, May.
    19. Gang-Jin Wang & Chi Xie & H. Eugene Stanley, 2018. "Correlation Structure and Evolution of World Stock Markets: Evidence from Pearson and Partial Correlation-Based Networks," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 607-635, March.
    20. Esmalifalak, Hamidreza, 2022. "Euclidean (dis)similarity in financial network analysis," Global Finance Journal, Elsevier, vol. 53(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:392:y:2013:i:9:p:2226-2234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.