Advanced Search
MyIDEAS: Login

A general extension result with applications to convexity, homotheticity and monotonicity

Contents:

Author Info

  • Demuynck, Thomas

Abstract

A well-known result in the theory of binary relations states that a binary relation has a complete and transitive extension if and only if it is consistent ([Suzumura K., 1976. Remarks on the theory of collective choice, Economica 43, 381-390], Theorem 3). A relation is consistent if the elements in the transitive closure are not in the inverse of the asymmetric part. We generalize this result by replacing the transitive closure with a more general function. Using this result, we set up a procedure which leads to existence results for complete extensions satisfying various additional properties. We demonstrate the usefulness of this procedure by applying it to the properties of convexity, homotheticity and monotonicity.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V88-4TB182S-1/2/167f2067679239f96adeb357f78d9c3f
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Mathematical Social Sciences.

Volume (Year): 57 (2009)
Issue (Month): 1 (January)
Pages: 96-109

as in new window
Handle: RePEc:eee:matsoc:v:57:y:2009:i:1:p:96-109

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505565

Related research

Keywords: Binary extensions Convexity Homotheticity Monotonicity;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. BOSSERT, Walter & SPRUMONT, Yves, 2001. "Non-Deteriorating Choice," Cahiers de recherche 2001-01, Universite de Montreal, Departement de sciences economiques.
  2. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
  3. Suzumura, Kataro, 1976. "Remarks on the Theory of Collective Choice," Economica, London School of Economics and Political Science, vol. 43(172), pages 381-90, November.
  4. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
  5. Paolo Scapparone, 1999. "Existence of a convex extension of a preference relation," Decisions in Economics and Finance, Springer, vol. 22(1), pages 5-11, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:57:y:2009:i:1:p:96-109. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.