Advanced Search
MyIDEAS: Login

Upper Semicontinuous Extensions of Binary Relations

Contents:

Author Info

  • Walter Bossert
  • Yves Sprumont
  • Kotaro Suzumura

Abstract

Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.

(This abstract was borrowed from another version of this item.)

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Institute of Economic Research, Hitotsubashi University in its series Discussion Paper Series with number a423.

as in new window
Length:
Date of creation: Jan 2002
Date of revision:
Handle: RePEc:hit:hituec:a423

Contact details of provider:
Postal: 2-1 Naka, Kunitachi City, Tokyo 186
Phone: +81-42-580-8327
Fax: +81-42-580-8333
Email:
Web page: http://www.ier.hit-u.ac.jp/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Kotaro Suzumura & Yongsheng Xu, 2003. "Recoverability of choice functions and binary relations: some duality results," Social Choice and Welfare, Springer, vol. 21(1), pages 21-37, 08.
  2. Sen, Amartya K, 1969. "Quasi-Transitivity, Rational Choice and Collective Decisions," Review of Economic Studies, Wiley Blackwell, vol. 36(107), pages 381-93, July.
  3. Donaldson, David & Weymark, John A., 1998. "A Quasiordering Is the Intersection of Orderings," Journal of Economic Theory, Elsevier, vol. 78(2), pages 382-387, February.
  4. Jaffray, Jean-Yves, 1975. "Semicontinuous extension of a partial order," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 395-406, December.
  5. Suzumura, Kataro, 1976. "Remarks on the Theory of Collective Choice," Economica, London School of Economics and Political Science, vol. 43(172), pages 381-90, November.
  6. Duggan, John, 1999. "A General Extension Theorem for Binary Relations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 1-16, May.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. T. Demuynck, 2009. "Common ordering extensions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/593, Ghent University, Faculty of Economics and Business Administration.
  2. Suzumura, Kotaro & Xu, Yongsheng, 2002. "On Constrained Dual Recoverability Theorems," Discussion Paper 123, Center for Intergenerational Studies, Institute of Economic Research, Hitotsubashi University.
  3. Andrikopoulos, Athanasios & Zacharias, Eleftherios, 2008. "General solutions for choice sets: The Generalized Optimal-Choice Axiom set," MPRA Paper 11645, University Library of Munich, Germany.
  4. Alcantud, José Carlos R. & Díaz, Susana, 2013. "Szpilrajn-type extensions of fuzzy quasiorderings," MPRA Paper 50547, University Library of Munich, Germany.
  5. T. Demuynck, 2006. "Existence of closed and complete extensions applied to convex, homothetic an monotonic orderings," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/407, Ghent University, Faculty of Economics and Business Administration.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:hit:hituec:a423. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Hiromichi Miyake).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.