IDEAS home Printed from https://ideas.repec.org/a/eee/lauspo/v132y2023ics026483772300306x.html
   My bibliography  Save this article

Cost distance and potential accessibility as alternative spatial approximators of human influence in LUCC modelling

Author

Listed:
  • Druga, Michal
  • Minár, Jozef

Abstract

Most land use/cover change (LUCC) models use socioeconomic predictors which spatially approximate human influence on the landscape. According to our meta-analysis, the simplest spatial approximations – the minimal Euclidean distance and indicators based on administrative areas – are used most often. We argue that these approximators are theoretically unjustified for a significant portion of LUCC research designs, mainly because the Euclidean distance ignore other factors influencing transportation costs and the administrative areas often have insufficient spatial resolution or unrepresentative shape. We introduce improvements which overcome these theoretical challenges: improved slope-based cost distance and exposure to human influence as a variant of potential accessibility. The exposure is modified to be measured in activity-per-area units (e.g., population/km2), which are easier to interpret and compare with other socioeconomic indicators (e.g., population density) than standard potential accessibility units. Logistic regression was used to quantify the predictive power of these alternative approximators within different LUCCs in Slovakia, across three time periods. Their performance (AUC) was compared with standard predictors in polynomial models, and their contribution when combined with biophysical predictors was evaluated using hierarchical partitioning. In line with the study’s theoretical assumptions, cost distance and exposure significantly surpassed the standard approximators of human influence in most comparisons. They achieved a relatively good performance even for some LUCCs (pastures, permanent cultures, forests, agricultural extensification and intensification, afforestation) where standard socioeconomic indicators were weak. These indicators thus showed potential to improve the precision of LUCC models, particularly in mountainous regions.

Suggested Citation

  • Druga, Michal & Minár, Jozef, 2023. "Cost distance and potential accessibility as alternative spatial approximators of human influence in LUCC modelling," Land Use Policy, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:lauspo:v:132:y:2023:i:c:s026483772300306x
    DOI: 10.1016/j.landusepol.2023.106840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S026483772300306X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.landusepol.2023.106840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sohl, Terry & Sayler, Kristi, 2008. "Using the FORE-SCE model to project land-cover change in the southeastern United States," Ecological Modelling, Elsevier, vol. 219(1), pages 49-65.
    2. Shengjun Yan & Xuan Wang & Yanpeng Cai & Chunhui Li & Rui Yan & Guannan Cui & Zhifeng Yang, 2018. "An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China," Sustainability, MDPI, vol. 10(12), pages 1-17, December.
    3. Ge Shi & Peng Ye & Liang Ding & Agustin Quinones & Yang Li & Nan Jiang, 2019. "Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China," IJERPH, MDPI, vol. 16(6), pages 1-19, March.
    4. Ti Luo & Ronghui Tan & Xuesong Kong & Jincheng Zhou, 2019. "Analysis of the Driving Forces of Urban Expansion Based on a Modified Logistic Regression Model: A Case Study of Wuhan City, Central China," Sustainability, MDPI, vol. 11(8), pages 1-21, April.
    5. Adam Rusinko & Michal Druga, 2022. "Barrier and corridor effects in cost-distance-based accessibility approximation for LUCC modelling: a case study of Slovakia from 2000 to 2018," Landscape Research, Taylor & Francis Journals, vol. 47(3), pages 316-332, April.
    6. Beria, Paolo & Debernardi, Andrea & Ferrara, Emanuele, 2017. "Measuring the long-distance accessibility of Italian cities," Journal of Transport Geography, Elsevier, vol. 62(C), pages 66-79.
    7. Chris Jacobs-Crisioni & Vasco Diogo & Carolina Perpina Castillo & Claudia Baranzelli & Filipe Batista e Silva & Konstantin Rosina & Boyan Kavalov & Carlo Lavalle, 2017. "The LUISA Territorial Reference Scenario 2017: A technical description," JRC Research Reports JRC108163, Joint Research Centre.
    8. de Freitas, Marcos Wellausen Dias & Muñoz, Pablo & dos Santos, João Roberto & Alves, Diógenes Salas, 2018. "Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil)," Ecological Modelling, Elsevier, vol. 384(C), pages 128-144.
    9. Ilkwon Kim & Quang Bao Le & Soo Jin Park & John Tenhunen & Thomas Koellner, 2014. "Driving Forces in Archetypical Land-Use Changes in a Mountainous Watershed in East Asia," Land, MDPI, vol. 3(3), pages 1-24, August.
    10. Nan Dong & Xiaohuan Yang & Hongyan Cai & Liming Wang, 2015. "A Novel Method for Simulating Urban Population Potential Based on Urban Patches: A Case Study in Jiangsu Province, China," Sustainability, MDPI, vol. 7(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Haifang & Huang, Yingying & Liu, Jinsong, 2023. "Study on travel behavior characteristics of air passengers in an airport hinterland," Journal of Air Transport Management, Elsevier, vol. 112(C).
    2. Lin Meng & Wentao Si, 2022. "The Driving Mechanism of Urban Land Expansion from 2005 to 2018: The Case of Yangzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    3. Adam J Terando & Jennifer Costanza & Curtis Belyea & Robert R Dunn & Alexa McKerrow & Jaime A Collazo, 2014. "The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    4. Veronique Beckers & Jeroen Beckers & Matthias Vanmaercke & Etienne Van Hecke & Anton Van Rompaey & Nicolas Dendoncker, 2018. "Modelling Farm Growth and Its Impact on Agricultural Land Use: A Country Scale Application of an Agent-Based Model," Land, MDPI, vol. 7(3), pages 1-19, September.
    5. Kai Li & Zhili Ma & Jinjin Liu, 2019. "A New Trend in the Space–Time Distribution of Cultivated Land Occupation for Construction in China and the Impact of Population Urbanization," Sustainability, MDPI, vol. 11(18), pages 1-23, September.
    6. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    7. Carolina Perpiña Castillo & Eloína Coll Aliaga & Carlo Lavalle & José Carlos Martínez Llario, 2020. "An Assessment and Spatial Modelling of Agricultural Land Abandonment in Spain (2015–2030)," Sustainability, MDPI, vol. 12(2), pages 1-23, January.
    8. Xue Zhang & Lingyun Liao & Zhengduo Xu & Jiayu Zhang & Mengwei Chi & Siren Lan & Qiaochun Gan, 2022. "Interactive Effects on Habitat Quality Using InVEST and GeoDetector Models in Wenzhou, China," Land, MDPI, vol. 11(5), pages 1-19, April.
    9. Tao Li & Rui Bao & Ling Li & Mingfang Tang & Hongbing Deng, 2023. "Temporal and Spatial Changes of Habitat Quality and Their Potential Driving Factors in Southwest China," Land, MDPI, vol. 12(2), pages 1-18, January.
    10. Beria, Paolo & Nistri, Dario & Laurino, Antonio, 2018. "Intercity coach liberalisation in Italy: Fares determinants in an evolving market," Research in Transportation Economics, Elsevier, vol. 69(C), pages 260-269.
    11. Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.
    12. De Toni, Andrea & Di Martino, Paolo & Dax, Thomas, 2021. "Location matters. Are science and policy arenas facing the Inner Peripheries challenges in EU?," Land Use Policy, Elsevier, vol. 100(C).
    13. Lili Zhang & Yi Miao & Haoxuan Wei & Teqi Dai, 2023. "Ecological Impacts Associated with the Qinghai–Tibet Railway and Its Influencing Factors: A Comparison Study on Diversified Research Units," IJERPH, MDPI, vol. 20(5), pages 1-16, February.
    14. Stephen M. Strader, 2018. "Spatiotemporal changes in conterminous US wildfire exposure from 1940 to 2010," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 543-565, May.
    15. Yong Cao & Cheng Wang & Yue Su & Houlang Duan & Xumei Wu & Rui Lu & Qiang Su & Yutong Wu & Zhaojun Chu, 2023. "Study on Spatiotemporal Evolution and Driving Forces of Habitat Quality in the Basin along the Yangtze River in Anhui Province Based on InVEST Model," Land, MDPI, vol. 12(5), pages 1-18, May.
    16. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.
    17. Dietz, Julia & Treydte, Anna Christina & Lippe, Melvin, 2023. "Exploring the future of Kafue National Park, Zambia: Scenario-based land use and land cover modelling to understand drivers and impacts of deforestation," Land Use Policy, Elsevier, vol. 126(C).
    18. Omaid Najmuddin & Xiangzheng Deng & Ruchira Bhattacharya, 2018. "The Dynamics of Land Use/Cover and the Statistical Assessment of Cropland Change Drivers in the Kabul River Basin, Afghanistan," Sustainability, MDPI, vol. 10(2), pages 1-18, February.
    19. Andrius Kučas & Boyan Kavalov & Carlo Lavalle, 2020. "Living Cost Gap in the European Union Member States," Sustainability, MDPI, vol. 12(21), pages 1-26, October.
    20. Le Giang Thi & Nguyen Thuan Duc & Tran Vinh Quoc, 2016. "Research and Application of Remote Sensing and GIS Technologies in Determining and Forecasting Land Use Changes by Markov Chain in Y Yen District - Nam Dinh Province," Real Estate Management and Valuation, Sciendo, vol. 24(3), pages 27-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:lauspo:v:132:y:2023:i:c:s026483772300306x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joice Jiang (email available below). General contact details of provider: https://www.journals.elsevier.com/land-use-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.