IDEAS home Printed from https://ideas.repec.org/a/eee/juipol/v71y2021ics0957178721000606.html
   My bibliography  Save this article

A shortage pricing mechanism for capacity remuneration with simulation for the Greek electricity balancing market

Author

Listed:
  • Tsaousoglou, Georgios
  • Petsinis, Konstantinos
  • Makris, Prodromos
  • Skoteinos, Iraklis
  • Efthymiopoulos, Nikolaos
  • Varvarigos, Emmanouel

Abstract

In a shortage pricing (or else scarcity pricing) model, the goal is to create extra revenues whenever the electric system approaches a shortage situation and send market signals that will drive capacity investments. Shortage pricing aims at producing a substantial increase in prices under shortage conditions, thus providing better incentives for new flexibility capacity investment and operation while keeping the security of supply within strict acceptable levels. The shortage price is based on the Loss of Load Probability and the Value of Lost Load. The purpose of this study is to simulate the hypothetical implementation of a shortage pricing mechanism in the Greek balancing market in order to discover cases of reserve capacity scarcity and provide indications for further considerations toward capacity remuneration mechanisms for this system. A real dataset from the Greek TSO data portfolio was used for this purpose. We examine two case studies showcasing that the proposed shortage pricing function can considerably increase the shortage prices exactly when needed by the electric system. Finally, policy implications are provided regarding the future use of the shortage pricing in Greece and its integration in the EU balancing market platforms currently under development.

Suggested Citation

  • Tsaousoglou, Georgios & Petsinis, Konstantinos & Makris, Prodromos & Skoteinos, Iraklis & Efthymiopoulos, Nikolaos & Varvarigos, Emmanouel, 2021. "A shortage pricing mechanism for capacity remuneration with simulation for the Greek electricity balancing market," Utilities Policy, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:juipol:v:71:y:2021:i:c:s0957178721000606
    DOI: 10.1016/j.jup.2021.101226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0957178721000606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jup.2021.101226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hach, Daniel & Chyong, Chi Kong & Spinler, Stefan, 2016. "Capacity market design options: A dynamic capacity investment model and a GB case study," European Journal of Operational Research, Elsevier, vol. 249(2), pages 691-705.
    2. Keppler, Jan Horst, 2017. "Rationales for capacity remuneration mechanisms: Security of supply externalities and asymmetric investment incentives," Energy Policy, Elsevier, vol. 105(C), pages 562-570.
    3. Anthony PAPAVASILIOU & Yves SMEERS, 2017. "Remuneration of flexibility using operating reserve demand curves: a case study of Belgium," LIDAM Reprints CORE 2900, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Neuhoff, Karsten & De Vries, Laurens, 2004. "Insufficient incentives for investment in electricity generations," Utilities Policy, Elsevier, vol. 12(4), pages 253-267, December.
    5. Karsten Neuhoff & Laurens De Vries, 2004. "Insufficient Incentives for Investment," Working Papers EP42, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Schwenen, Sebastian, 2014. "Market design and supply security in imperfect power markets," Energy Economics, Elsevier, vol. 43(C), pages 256-263.
    7. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    8. William W. Hogan, 2013. "Electricity Scarcity Pricing Through Operating Reserves," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    9. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    10. Veronika Grimm & Gregor Zoettl, 2013. "Investment Incentives and Electricity Spot Market Competition," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(4), pages 832-851, December.
    11. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    3. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    4. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    5. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    6. Mier, Mathias, 2021. "Efficient pricing of electricity revisited," Energy Economics, Elsevier, vol. 104(C).
    7. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    8. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    9. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    10. Simshauser, Paul & Tian, Yuan & Whish-Wilson, Patrick, 2015. "Vertical integration in energy-only electricity markets," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 35-56.
    11. Brito-Pereira, Paulo & Mastropietro, Paolo & Rodilla, Pablo & Barroso, Luiz Augusto & Batlle, Carlos, 2022. "Adjusting the aim of capacity mechanisms: Future-proof reliability metrics and firm supply calculations," Energy Policy, Elsevier, vol. 164(C).
    12. Mastropietro, Paolo & Herrero, Ignacio & Rodilla, Pablo & Batlle, Carlos, 2016. "A model-based analysis on the impact of explicit penalty schemes in capacity mechanisms," Applied Energy, Elsevier, vol. 168(C), pages 406-417.
    13. Brito-Pereira, Paulo & Rodilla, Pablo & Mastropietro, Paolo & Batlle, Carlos, 2022. "Self-fulfilling or self-destroying prophecy? The relevance of de-rating factors in modern capacity mechanisms," Applied Energy, Elsevier, vol. 314(C).
    14. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    15. Lukas Block & Bastian Westbrock, 2022. "Capacity investments in a competitive energy market," Working Papers Dissertations 95, Paderborn University, Faculty of Business Administration and Economics.
    16. Simshauser, Paul, 2021. "Vertical integration, peaking plant commitments and the role of credit quality in energy-only markets," Energy Economics, Elsevier, vol. 104(C).
    17. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
    18. Roques, Fabien & Finon, Dominique, 2017. "Adapting electricity markets to decarbonisation and security of supply objectives: Toward a hybrid regime?," Energy Policy, Elsevier, vol. 105(C), pages 584-596.
    19. Mou, Yuting & Papavasiliou, Anthony & Hartz, Katharina & Dusolt, Alexander & Redl, Christian, 2023. "An analysis of shortage pricing and capacity remuneration mechanisms on the pan-European common energy market," Energy Policy, Elsevier, vol. 183(C).
    20. David P. Brown & Andrew Eckert & Douglas Silveira, 2023. "Strategic interaction between wholesale and ancillary service markets," Competition and Regulation in Network Industries, , vol. 24(4), pages 174-198, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:juipol:v:71:y:2021:i:c:s0957178721000606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/utilities-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.