IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics0301420721004414.html
   My bibliography  Save this article

Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China

Author

Listed:
  • Guohua, Yuan
  • Elshkaki, Ayman
  • Xiao, Xi

Abstract

Nickel demand is increasing globally and in China as a result of increasing demand for its traditional applications and the transition in energy and transportation sectors. Meanwhile, nickel production is associated with significant energy, water and carbon emissions, which are expected to increase due to increasing demand, decreasing ore grade, and production processes shift. In this paper, we analyse material-energy-water-climate nexus associated with nickel use in China using a dynamic material flow-stock model and several scenarios for nickel demand in traditional applications, energy supply technologies, and electric vehicles, and its supply from primary and secondary sources. The results indicate that nickel demand is expected to increase in all scenarios and stabilize between 2034 and 2040. Secondary supply could cover between 51 and 65% of the demand by 2050 if China is restricting scrap import, while up to 85% without restriction. Average annual energy associated with nickel production constitutes between 2.6 and 6.9% of total electricity consumption in China in 2018. Importing scrap reduce between 27 and 42% of cumulative energy. Average annual CO2 emissions constitute between 0.2 and 0.52% of the power sector emissions in 2018, and average annual water constitutes between 0.09 and 0.31% of total water consumption in industrial sector in 2015, mainly attributed to indirect water consumption.

Suggested Citation

  • Guohua, Yuan & Elshkaki, Ayman & Xiao, Xi, 2021. "Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721004414
    DOI: 10.1016/j.resourpol.2021.102432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721004414
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florian Fizaine & Victor Court, 2015. "Renewable electricity producing technologies and metal depletion: a sensitivity analysis using the EROI," Post-Print halshs-01227860, HAL.
    2. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    3. Elshkaki, Ayman & Reck, Barbara K. & Graedel, T.E., 2017. "Anthropogenic nickel supply, demand, and associated energy and water use," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 300-307.
    4. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    5. Rostkowski, Katherine & Rauch, Jason & Drakonakis, Konstantine & Reck, Barbara & Gordon, R.B. & Graedel, T.E., 2007. "“Bottom–up” study of in-use nickel stocks in New Haven, CT," Resources, Conservation & Recycling, Elsevier, vol. 50(1), pages 58-70.
    6. Barbara K. Reck & Vera Susanne Rotter, 2012. "Comparing Growth Rates of Nickel and Stainless Steel Use in the Early 2000s," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 518-528, August.
    7. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    8. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    9. Eckelman, Matthew J., 2010. "Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry," Resources, Conservation & Recycling, Elsevier, vol. 54(4), pages 256-266.
    10. Bartzas, Georgios & Komnitsas, Kostas, 2015. "Life cycle assessment of ferronickel production in Greece," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 113-122.
    11. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elshkaki, Ayman, 2020. "Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications," Energy, Elsevier, vol. 202(C).
    2. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    3. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    4. He, Rui-fang & Zhong, Mei-rui & Huang, Jian-bai, 2021. "The dynamic effects of renewable-energy and fossil-fuel technological progress on metal consumption in the electric power industry," Resources Policy, Elsevier, vol. 71(C).
    5. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    6. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    7. Elshkaki, Ayman & Reck, Barbara K. & Graedel, T.E., 2017. "Anthropogenic nickel supply, demand, and associated energy and water use," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 300-307.
    8. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    9. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    10. Victor Court & Pierre-André Jouvet & Frédéric Lantz, 2015. "Endogenous economic growth, EROI, and transition towards renewable energy," Working Papers 1507, Chaire Economie du climat.
    11. Miller, Hugh & Dikau, Simon & Svartzman, Romain & Dees, Stéphane, 2023. "The stumbling block in ‘the race of our lives’: transition-critical materials, financial risks and the NGFS climate scenarios," LSE Research Online Documents on Economics 118095, London School of Economics and Political Science, LSE Library.
    12. Colla, Martin & Ioannou, Anastasia & Falcone, Gioia, 2020. "Critical review of competitiveness indicators for energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    14. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    15. Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
    16. Kim Maya Yavor & Vanessa Bach & Matthias Finkbeiner, 2021. "Resource Assessment of Renewable Energy Systems—A Review," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    17. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    18. Beibei Che & Chaofeng Shao & Zhirui Lu & Binghong Qian & Sihan Chen, 2022. "Mineral Requirements for China’s Energy Transition to 2060—Focus on Electricity and Transportation," Sustainability, MDPI, vol. 15(1), pages 1-23, December.
    19. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    20. Xavier GALIEGUE, 2021. "Les défis et paradoxes de la tansition énergétique," LEO Working Papers / DR LEO 2915, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721004414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.