IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v74y2021ics0301420721004268.html
   My bibliography  Save this article

How economic indicators impact the EU internal demand for critical raw materials

Author

Listed:
  • Černý, Igor
  • Vaněk, Michal
  • Maruszewska, Ewa Wanda
  • Beneš, Filip

Abstract

To be able to better predict future demand for critical raw materials, to better negotiate trade agreements or to better stimulate the extraction of such raw materials, we investigate how economic indicators (raw material average annual price, EU GDP at purchasing power parity, cumulative EU inflation, and EU population) impact the EU internal demand for 11 raw materials in the period from 1994 to 2012.

Suggested Citation

  • Černý, Igor & Vaněk, Michal & Maruszewska, Ewa Wanda & Beneš, Filip, 2021. "How economic indicators impact the EU internal demand for critical raw materials," Resources Policy, Elsevier, vol. 74(C).
  • Handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721004268
    DOI: 10.1016/j.resourpol.2021.102417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420721004268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2021.102417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blengini, Gian Andrea & Nuss, Philip & Dewulf, Jo & Nita, Viorel & Peirò, Laura Talens & Vidal-Legaz, Beatriz & Latunussa, Cynthia & Mancini, Lucia & Blagoeva, Darina & Pennington, David & Pellegrini,, 2017. "EU methodology for critical raw materials assessment: Policy needs and proposed solutions for incremental improvements," Resources Policy, Elsevier, vol. 53(C), pages 12-19.
    2. Jin, Yanya & Kim, Junbeum & Guillaume, Bertrand, 2016. "Review of critical material studies," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 77-87.
    3. Pell, Robert S. & Wall, Frances & Yan, Xiaoyu & Bailey, Gwendolyn, 2019. "Applying and advancing the economic resource scarcity potential (ESP) method for rare earth elements," Resources Policy, Elsevier, vol. 62(C), pages 472-481.
    4. Massari, Stefania & Ruberti, Marcello, 2013. "Rare earth elements as critical raw materials: Focus on international markets and future strategies," Resources Policy, Elsevier, vol. 38(1), pages 36-43.
    5. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    6. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    7. Rabe, Wiebke & Kostka, Genia & Smith Stegen, Karen, 2017. "China's supply of critical raw materials: Risks for Europe's solar and wind industries?," Energy Policy, Elsevier, vol. 101(C), pages 692-699.
    8. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    9. Hayes, Sarah M. & McCullough, Erin A., 2018. "Critical minerals: A review of elemental trends in comprehensive criticality studies," Resources Policy, Elsevier, vol. 59(C), pages 192-199.
    10. Gleich, Benedikt & Achzet, Benjamin & Mayer, Herbert & Rathgeber, Andreas, 2013. "An empirical approach to determine specific weights of driving factors for the price of commodities—A contribution to the measurement of the economic scarcity of minerals and metals," Resources Policy, Elsevier, vol. 38(3), pages 350-362.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Considine, Jennifer & Galkin, Phillip & Hatipoglu, Emre & Aldayel, Abdullah, 2023. "The effects of a shock to critical minerals prices on the world oil price and inflation," Energy Economics, Elsevier, vol. 127(PB).
    2. Yu, Donglei & Wenhui, Xiong & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Imran, Muhammad & Zaman, Khalid & Haffar, Mohamed, 2023. "Navigating the global mineral market: A study of resource wealth and the energy transition," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi, Jiahui & Dai, Sheng & Cheng, Jinhua & Wu, Qiaosheng & Liu, Kailei, 2021. "Production quota policy in China: Implications for sustainable supply capacity of critical minerals," Resources Policy, Elsevier, vol. 72(C).
    2. Kim, Juhan & Lee, Jungbae & Kim, BumChoong & Kim, Jinsoo, 2019. "Raw material criticality assessment with weighted indicators: An application of fuzzy analytic hierarchy process," Resources Policy, Elsevier, vol. 60(C), pages 225-233.
    3. Ewa Lewicka & Katarzyna Guzik & Krzysztof Galos, 2021. "On the Possibilities of Critical Raw Materials Production from the EU’s Primary Sources," Resources, MDPI, vol. 10(5), pages 1-21, May.
    4. Vidal, Rosario & Alberola-Borràs, Jaume-Adrià & Mora-Seró, Iván, 2020. "Abiotic depletion and the potential risk to the supply of cesium," Resources Policy, Elsevier, vol. 68(C).
    5. Yufeng Chen & Biao Zheng, 2019. "What Happens after the Rare Earth Crisis: A Systematic Literature Review," Sustainability, MDPI, vol. 11(5), pages 1-26, March.
    6. Galos, Krzysztof & Lewicka, Ewa & Burkowicz, Anna & Guzik, Katarzyna & Kot-Niewiadomska, Alicja & Kamyk, Jarosław & Szlugaj, Jarosław, 2021. "Approach to identification and classification of the key, strategic and critical minerals important for the mineral security of Poland," Resources Policy, Elsevier, vol. 70(C).
    7. Zuo, Zhili & Cheng, Jinhua & Guo, Haixiang & McLellan, Benjamin Craig, 2021. "Catastrophe progression method - path (CPM-PATH) early warning analysis of Chinese rare earths industry security," Resources Policy, Elsevier, vol. 73(C).
    8. Hatayama, Hiroki & Tahara, Kiyotaka, 2018. "Adopting an objective approach to criticality assessment: Learning from the past," Resources Policy, Elsevier, vol. 55(C), pages 96-102.
    9. Alicja Kot-Niewiadomska & Krzysztof Galos & Jarosław Kamyk, 2021. "Safeguarding of Key Minerals Deposits as a Basis of Sustainable Development of Polish Economy," Resources, MDPI, vol. 10(5), pages 1-32, May.
    10. Thibeault, Al & Ryder, Michael & Tomomewo, Olusegun & Mann, Michael, 2023. "A review of competitive advantage theory applied to the global rare earth industry transition," Resources Policy, Elsevier, vol. 85(PA).
    11. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    12. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    13. Marie K. Schellens & Johanna Gisladottir, 2018. "Critical Natural Resources: Challenging the Current Discourse and Proposal for a Holistic Definition," Resources, MDPI, vol. 7(4), pages 1-28, December.
    14. Göçmen Polat, Elifcan & Yücesan, Melih & Gül, Muhammet, 2023. "A comparative framework for criticality assessment of strategic raw materials in Turkey," Resources Policy, Elsevier, vol. 82(C).
    15. Shule Li & Jingjing Yan & Qiuming Pei & Jinghua Sha & Siyu Mou & Yong Xiao, 2019. "Risk Identification and Evaluation of the Long-term Supply of Manganese Mines in China Based on the VW-BGR Method," Sustainability, MDPI, vol. 11(9), pages 1-23, May.
    16. Andreas Manhart & Regine Vogt & Michael Priester & Günter Dehoust & Andreas Auberger & Markus Blepp & Peter Dolega & Claudia Kämper & Jürgen Giegrich & Gerhard Schmidt & Jan Kosmol, 2019. "The environmental criticality of primary raw materials – A new methodology to assess global environmental hazard potentials of minerals and metals from mining," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 32(1), pages 91-107, April.
    17. Mitja Mori & Rok Stropnik & Mihael Sekavčnik & Andrej Lotrič, 2021. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    18. Aiman Fadil & Paul Davis & John Geraghty, 2023. "A Mixed-Method Approach to Determine the Successful Factors Affecting the Criticality Level of Intermediate and Final Products on National Basis: A Case Study from Saudi Arabia," Sustainability, MDPI, vol. 15(7), pages 1-29, March.
    19. Ozawa, Akito & Morimoto, Shinichirou & Hatayama, Hiroki & Anzai, Yurie, 2023. "Energy–materials nexus of electrified vehicle penetration in Japan: A study on energy transition and cobalt flow," Energy, Elsevier, vol. 277(C).
    20. Clément Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Sokhna Seck & Marine Simoën, 2019. "Some Geopolitical issues of the Energy Transition," Working Papers hal-03191388, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721004268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.