IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v72y2018icp13-22.html
   My bibliography  Save this article

A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route

Author

Listed:
  • Zhao, Yun
  • Yu, Hongbo

Abstract

•A door-to-door travel time accessibility evaluation approach.•New city-pair-specific catchment area delineation method that factors in modal competition.•Evaluate the proposed Dallas-Houston HSR project using the proposed door-to-door approach.•Apply an RGB mixing scheme to visualize detailed spatial patterns of catchment areas in the Dallas-Houston HSR corridor.

Suggested Citation

  • Zhao, Yun & Yu, Hongbo, 2018. "A door-to-door travel time approach for evaluating modal competition of intercity travel: A focus on the proposed Dallas-Houston HSR route," Journal of Transport Geography, Elsevier, vol. 72(C), pages 13-22.
  • Handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:13-22
    DOI: 10.1016/j.jtrangeo.2018.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317305653
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.07.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    2. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    3. Chandra, Shailesh & Vadali, Sharada, 2014. "Evaluating accessibility impacts of the proposed America 2050 high-speed rail corridor for the Appalachian Region," Journal of Transport Geography, Elsevier, vol. 37(C), pages 28-46.
    4. Levinson, David M., 2012. "Accessibility impacts of high-speed rail," Journal of Transport Geography, Elsevier, vol. 22(C), pages 288-291.
    5. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun, 2017. "Impacts of high-speed rail lines on the city network in China," Journal of Transport Geography, Elsevier, vol. 60(C), pages 257-266.
    6. Lakshmanan, T.R., 2011. "The broader economic consequences of transport infrastructure investments," Journal of Transport Geography, Elsevier, vol. 19(1), pages 1-12.
    7. Itzhak Benenson & Karel Martens & Yodan Rofé & Ariela Kwartler, 2011. "Public transport versus private car GIS-based estimation of accessibility applied to the Tel Aviv metropolitan area," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 499-515, December.
    8. Cao, Jing & Liu, Xiaoyue Cathy & Wang, Yinhai & Li, Qingquan, 2013. "Accessibility impacts of China’s high-speed rail network," Journal of Transport Geography, Elsevier, vol. 28(C), pages 12-21.
    9. Salonen, Maria & Toivonen, Tuuli, 2013. "Modelling travel time in urban networks: comparable measures for private car and public transport," Journal of Transport Geography, Elsevier, vol. 31(C), pages 143-153.
    10. Martínez Sánchez-Mateos, Héctor S. & Givoni, Moshe, 2012. "The accessibility impact of a new High-Speed Rail line in the UK – a preliminary analysis of winners and losers," Journal of Transport Geography, Elsevier, vol. 25(C), pages 105-114.
    11. Shaw, Shih-Lung & Fang, Zhixiang & Lu, Shiwei & Tao, Ran, 2014. "Impacts of high speed rail on railroad network accessibility in China," Journal of Transport Geography, Elsevier, vol. 40(C), pages 112-122.
    12. van Wee, Bert, 2016. "Accessible accessibility research challenges," Journal of Transport Geography, Elsevier, vol. 51(C), pages 9-16.
    13. Roger Vickerman, 1997. "High-speed rail in Europe: experience and issues for future development," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(1), pages 21-38.
    14. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    15. Mi Diao & Yi Zhu & Jiren Zhu, 2017. "Intra-city access to inter-city transport nodes: The implications of high-speed-rail station locations for the urban development of Chinese cities," Urban Studies, Urban Studies Journal Limited, vol. 54(10), pages 2249-2267, August.
    16. Vespermann, Jan & Wald, Andreas, 2011. "Intermodal integration in air transportation: status quo, motives and future developments," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1187-1197.
    17. Moshe Givoni, 2006. "Development and Impact of the Modern High‐speed Train: A Review," Transport Reviews, Taylor & Francis Journals, vol. 26(5), pages 593-611, January.
    18. Zhang, Wenxin & Nian, Peihao & Lyu, Guowei, 2016. "A multimodal approach to assessing accessibility of a high-speed railway station," Journal of Transport Geography, Elsevier, vol. 54(C), pages 91-101.
    19. Jiao, Jingjuan & Wang, Jiaoe & Jin, Fengjun & Dunford, Michael, 2014. "Impacts on accessibility of China’s present and future HSR network," Journal of Transport Geography, Elsevier, vol. 40(C), pages 123-132.
    20. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    21. S L Handy & D A Niemeier, 1997. "Measuring Accessibility: An Exploration of Issues and Alternatives," Environment and Planning A, , vol. 29(7), pages 1175-1194, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jesuina Chipindula & Hongbo Du & Venkata S. V. Botlaguduru & Doeun Choe & Raghava R. Kommalapati, 2022. "Life cycle environmental impact of a high-speed rail system in the Houston-Dallas I-45 corridor," Public Transport, Springer, vol. 14(2), pages 481-501, June.
    2. Baumeister, Stefan & Leung, Abraham & Ryley, Tim, 2020. "The emission reduction potentials of First Generation Electric Aircraft (FGEA) in Finland," Journal of Transport Geography, Elsevier, vol. 85(C).
    3. Margarita Bagamanova & Miguel Mujica Mota & Vittorio Di Vito, 2022. "Exploring the Efficiency of Future Multimodal Networks: A Door-to-Door Case in Europe," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    4. Xu, Minhao & Shuai, Bin & Wang, Xin & Liu, Hongyi & Zhou, Hui, 2023. "Analysis of the accessibility of connecting transport at High-speed rail stations from the perspective of departing passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Avogadro, Nicolò & Cattaneo, Mattia & Paleari, Stefano & Redondi, Renato, 2021. "Replacing short-medium haul intra-European flights with high-speed rail: Impact on CO2 emissions and regional accessibility," Transport Policy, Elsevier, vol. 114(C), pages 25-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Miao & Fan, Wei, 2018. "Accessibility impact of future high speed rail corridor on the piedmont Atlantic megaregion," Journal of Transport Geography, Elsevier, vol. 73(C), pages 1-12.
    2. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    3. Wang, Lvhua & Liu, Yongxue & Sun, Chao & Liu, Yahui, 2016. "Accessibility impact of the present and future high-speed rail network: A case study of Jiangsu Province, China," Journal of Transport Geography, Elsevier, vol. 54(C), pages 161-172.
    4. Zhang, Wenxin & Nian, Peihao & Lyu, Guowei, 2016. "A multimodal approach to assessing accessibility of a high-speed railway station," Journal of Transport Geography, Elsevier, vol. 54(C), pages 91-101.
    5. Kim, Hyojin & Sultana, Selima, 2015. "The impacts of high-speed rail extensions on accessibility and spatial equity changes in South Korea from 2004 to 2018," Journal of Transport Geography, Elsevier, vol. 45(C), pages 48-61.
    6. Luo, Huanhuan & Zhao, Shengchuan, 2021. "Impacts of high-speed rail on the inequality of intercity accessibility: A case study of Liaoning Province, China," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. Tanaka, Koichi, 2023. "Impacts of the opening of the maglev railway on daily accessibility in Japan: A comparative analysis with that of the Shinkansen," Journal of Transport Geography, Elsevier, vol. 106(C).
    8. Kim, Hyojin & Sultana, Selima & Weber, Joe, 2018. "A geographic assessment of the economic development impact of Korean high-speed rail stations," Transport Policy, Elsevier, vol. 66(C), pages 127-137.
    9. Xiaomin Wang & Wenxin Zhang, 2019. "Efficiency and Spatial Equity Impacts of High-Speed Rail on the Central Plains Economic Region of China," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    10. Zheng, Longfei & Long, Fenjie & Chang, Zheng & Ye, Jingsong, 2019. "Ghost town or city of hope? The spatial spillover effects of high-speed railway stations in China," Transport Policy, Elsevier, vol. 81(C), pages 230-241.
    11. Huang, Yan & Zong, Huiming, 2020. "The spatial distribution and determinants of China’s high-speed train services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 56-70.
    12. Wang, Jiaoe & Du, Delin & Huang, Jie, 2020. "Inter-city connections in China: High-speed train vs. inter-city coach," Journal of Transport Geography, Elsevier, vol. 82(C).
    13. Chen, Xiaoyan & Liu, Yisheng, 2020. "Visualization analysis of high-speed railway research based on CiteSpace," Transport Policy, Elsevier, vol. 85(C), pages 1-17.
    14. Xu, Wangtu (Ato) & Long, Ying & Zhang, Wei, 2019. "Prioritizing future funding and construction of the planned high-speed rail corridors of China – According to regional structure and urban land development potential indices," Transport Policy, Elsevier, vol. 81(C), pages 381-395.
    15. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    16. Mohsen Momenitabar & Zhila Dehdari Ebrahimi & Mohammad Arani, 2020. "A Systematic and Analytical Review of the Socioeconomic and Environmental Impact of the Deployed High-Speed Rail (HSR) Systems on the World," Papers 2003.04452, arXiv.org, revised Mar 2020.
    17. Sun, Xiaoqian & Wandelt, Sebastian & Zhang, Anming, 2021. "Comparative accessibility of Chinese airports and high-speed railway stations: A high-resolution, yet scalable framework based on open data," Journal of Air Transport Management, Elsevier, vol. 92(C).
    18. Wang, Lei, 2018. "High-speed rail services development and regional accessibility restructuring in megaregions: A case of the Yangtze River Delta, China," Transport Policy, Elsevier, vol. 72(C), pages 34-44.
    19. Hu, Xinlei & Huang, Jie & Shi, Feng, 2019. "Circuity in China's high-speed-rail network," Journal of Transport Geography, Elsevier, vol. 80(C).
    20. Mohsen Momenitabar & Raj Bridgelall & Zhila Dehdari Ebrahimi & Mohammad Arani, 2021. "Literature Review of Socioeconomic and Environmental Impacts of High-Speed Rail in the World," Sustainability, MDPI, vol. 13(21), pages 1-27, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:13-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.