IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v106y2023ics0966692322002332.html
   My bibliography  Save this article

The role of neighbourhood design in cycling activity during COVID-19: An exploration of the Melbourne experience

Author

Listed:
  • Naseri, Mahsa
  • Delbosc, Alexa
  • Kamruzzaman, Liton

Abstract

COVID-19 restrictions imposed significant changes on human mobility patterns, with some studies finding significant increases or decreases in cycling. However, to date there is little understanding on how the neighbourhood-level built environment influenced cycling behaviour during the COVID-19 restrictions. As different neighbourhood have different built environment characteristics, it is possible that cycling trends varied across different built environment settings. We aimed to answer this question by examining recreational cycling during different stages of lockdown in Melbourne, Australia. We compared self-reported recreational cycling frequency (weekly) data from 1344 respondents between pre-COVID and two different stages in lockdown. We tested whether the built environment of their residential neighbourhood and different sociodemographic characteristics influenced leisure cycling rates and whether the effect of these factors varied between different stages of COVID-19 restriction. We found that cycling declined significantly during the two stages of COVID-19 lockdown. Cycling infrastructure density and connectivity are two built environment factors that had a significant effect on limiting the decline in leisure cycling during the pandemic. Furthermore, men and younger people had higher cycling rates in comparison to other groups, suggesting that restrictions on indoor activities and travel limits were not enough to encourage women or older people to cycle more during the pandemic.

Suggested Citation

  • Naseri, Mahsa & Delbosc, Alexa & Kamruzzaman, Liton, 2023. "The role of neighbourhood design in cycling activity during COVID-19: An exploration of the Melbourne experience," Journal of Transport Geography, Elsevier, vol. 106(C).
  • Handle: RePEc:eee:jotrge:v:106:y:2023:i:c:s0966692322002332
    DOI: 10.1016/j.jtrangeo.2022.103510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692322002332
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2022.103510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rachel Aldred & Bridget Elliott & James Woodcock & Anna Goodman, 2017. "Cycling provision separated from motor traffic: a systematic review exploring whether stated preferences vary by gender and age," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 29-55, January.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Jesus M. Barajas, 2020. "Supplemental infrastructure: how community networks and immigrant identity influence cycling," Transportation, Springer, vol. 47(3), pages 1251-1274, June.
    4. Braun, Lindsay M. & Rodriguez, Daniel A. & Gordon-Larsen, Penny, 2019. "Social (in)equity in access to cycling infrastructure: Cross-sectional associations between bike lanes and area-level sociodemographic characteristics in 22 large U.S. cities," Journal of Transport Geography, Elsevier, vol. 80(C).
    5. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    6. Xing, Yan & Handy, Susan L. & Mokhtarian, Patricia L., 2010. "Factors Associated with Proportions and Miles of Bicycling for Transportation and Recreation in Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt74n4j1p0, Institute of Transportation Studies, UC Davis.
    7. United Nations UN, 2015. "Transforming our World: the 2030 Agenda for Sustainable Development," Working Papers id:7559, eSocialSciences.
    8. Kamruzzaman, Md. & Hine, Julian, 2013. "Self-proxy agreement and weekly school travel behaviour in a sectarian divided society," Journal of Transport Geography, Elsevier, vol. 29(C), pages 74-85.
    9. Yeran Sun & Yunyan Du & Yu Wang & Liyuan Zhuang, 2017. "Examining Associations of Environmental Characteristics with Recreational Cycling Behaviour by Street-Level Strava Data," IJERPH, MDPI, vol. 14(6), pages 1-12, June.
    10. Flanagan, Elizabeth & Lachapelle, Ugo & El-Geneidy, Ahmed, 2016. "Riding tandem: Does cycling infrastructure investment mirror gentrification and privilege in Portland, OR and Chicago, IL?," Research in Transportation Economics, Elsevier, vol. 60(C), pages 14-24.
    11. Venter, Zander & Barton, David & gundersen, vegard & Figari, Helene & Nowell, Megan, 2020. "Urban nature in a time of crisis: recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway," SocArXiv kbdum, Center for Open Science.
    12. Prati, Gabriele & Fraboni, Federico & De Angelis, Marco & Pietrantoni, Luca & Johnson, Daniel & Shires, Jeremy, 2019. "Gender differences in cycling patterns and attitudes towards cycling in a sample of European regular cyclists," Journal of Transport Geography, Elsevier, vol. 78(C), pages 1-7.
    13. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    14. Cheng, Long & Chen, Xuewu & Yang, Shuo & Cao, Zhan & De Vos, Jonas & Witlox, Frank, 2019. "Active travel for active ageing in China: The role of built environment," Journal of Transport Geography, Elsevier, vol. 76(C), pages 142-152.
    15. Combs, Tabitha & Pardo, Carlos F., 2021. "Shifting Streets COVID-19 Mobility Data: Findings from a global dataset and a research agenda for transport planning and policy," SocArXiv 2mzuy, Center for Open Science.
    16. Rachel Aldred & James Woodcock & Anna Goodman, 2016. "Does More Cycling Mean More Diversity in Cycling?," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 28-44, January.
    17. Mosabbir Pasha & Shakil Rifaat & Richard Tay & Alex de Barros, 2016. "Urban design and planning influences on the share of trips taken by cycling," Journal of Urban Design, Taylor & Francis Journals, vol. 21(4), pages 471-480, July.
    18. Vidal Tortosa, Eugeni & Lovelace, Robin & Heinen, Eva & Mann, Richard P., 2021. "Cycling behaviour and socioeconomic disadvantage: An investigation based on the English National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 173-185.
    19. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    20. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    21. Cervero, Robert & Denman, Steve & Jin, Ying, 2019. "Network design, built and natural environments, and bicycle commuting: Evidence from British cities and towns," Transport Policy, Elsevier, vol. 74(C), pages 153-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Borowska-Stefańska & Michał Kowalski & Paulina Kurzyk & Alireza Sahebgharani & Szymon Wiśniewski, 2022. "Spatiotemporal Changeability of the Load of the Urban Road Transport System under Permanent and Short-Term Legal and Administrative Retail Restrictions," Sustainability, MDPI, vol. 14(9), pages 1-30, April.
    2. Ji, Shujuan & Wang, Xin & Lyu, Tao & Liu, Xiaojie & Wang, Yuanqing & Heinen, Eva & Sun, Zhenwei, 2022. "Understanding cycling distance according to the prediction of the XGBoost and the interpretation of SHAP: A non-linear and interaction effect analysis," Journal of Transport Geography, Elsevier, vol. 103(C).
    3. Iwińska, Katarzyna & Blicharska, Malgorzata & Pierotti, Livia & Tainio, Marko & de Nazelle, Audrey, 2018. "Cycling in Warsaw, Poland – Perceived enablers and barriers according to cyclists and non-cyclists," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 291-301.
    4. Regine Gerike & Caroline Koszowski & Bettina Schröter & Ralph Buehler & Paul Schepers & Johannes Weber & Rico Wittwer & Peter Jones, 2021. "Built Environment Determinants of Pedestrian Activities and Their Consideration in Urban Street Design," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    5. Steven R Gehrke & Kelly J Clifton, 2019. "An activity-related land use mix construct and its connection to pedestrian travel," Environment and Planning B, , vol. 46(1), pages 9-26, January.
    6. Hosseinzadeh, Aryan & Algomaiah, Majeed & Kluger, Robert & Li, Zhixia, 2021. "Spatial analysis of shared e-scooter trips," Journal of Transport Geography, Elsevier, vol. 92(C).
    7. Wang, Donggen & Lin, Tao, 2013. "Built environments, social environments, and activity-travel behavior: a case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 31(C), pages 286-295.
    8. Dandan Xu & Yang Bian & Shinan Shu, 2020. "Research on the Psychological Model of Free-floating Bike-Sharing Using Behavior: A Case Study of Beijing," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    9. Yang, Zhuo & Franz, Mark L. & Zhu, Shanjiang & Mahmoudi, Jina & Nasri, Arefeh & Zhang, Lei, 2018. "Analysis of Washington, DC taxi demand using GPS and land-use data," Journal of Transport Geography, Elsevier, vol. 66(C), pages 35-44.
    10. Millward, Hugh & Spinney, Jamie & Scott, Darren, 2013. "Active-transport walking behavior: destinations, durations, distances," Journal of Transport Geography, Elsevier, vol. 28(C), pages 101-110.
    11. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    12. Neves, Carlos Eduardo Teixeira & da Silva, Alan Ricardo & Arruda, Fabiana Serra de, 2021. "Exploring the link between built environment and walking choice in São Paulo city, Brazil," Journal of Transport Geography, Elsevier, vol. 93(C).
    13. Mahdi Rashidi & Seyed-Mohammad Seyedhosseini & Ali Naderan, 2023. "Defining Psychological Factors of Cycling in Tehran City," Sustainability, MDPI, vol. 15(4), pages 1-17, February.
    14. Ha Na Im & Chang Gyu Choi, 2019. "The hidden side of the entropy-based land-use mix index: Clarifying the relationship between pedestrian volume and land-use mix," Urban Studies, Urban Studies Journal Limited, vol. 56(9), pages 1865-1881, July.
    15. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    16. Biggar, Matt & Ardoin, Nicole M., 2017. "Community context, human needs, and transportation choices: A view across San Francisco Bay Area communities," Journal of Transport Geography, Elsevier, vol. 60(C), pages 189-199.
    17. Vidal Tortosa, Eugeni & Lovelace, Robin & Heinen, Eva & Mann, Richard P., 2021. "Cycling behaviour and socioeconomic disadvantage: An investigation based on the English National Travel Survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 173-185.
    18. Martin, Adam & Morciano, Marcello & Suhrcke, Marc, 2021. "Determinants of bicycle commuting and the effect of bicycle infrastructure investment in London: Evidence from UK census microdata," Economics & Human Biology, Elsevier, vol. 41(C).
    19. Houde, Maxime & Apparicio, Philippe & Séguin, Anne-Marie, 2018. "A ride for whom: Has cycling network expansion reduced inequities in accessibility in Montreal, Canada?," Journal of Transport Geography, Elsevier, vol. 68(C), pages 9-21.
    20. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:106:y:2023:i:c:s0966692322002332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.