IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v96y2020ics0305048318308909.html
   My bibliography  Save this article

Optimal decisions for salvage logging after wildfires

Author

Listed:
  • Baselli, Gianluca
  • Contreras, Felipe
  • Lillo, Matías
  • Marín, Magdalena
  • Carrasco, Rodrigo A.

Abstract

Strategic, tactical, and operational harvesting plans for the forestry and logging industry have been widely studied for more than 60 years. Many different settings and specific constraints due to legal, environmental, and operational requirements have been modeled, improving the performance of the harvesting process significantly. During the summer of 2017, Chile suffered from the most massive wildfires in its history, affecting almost half a million hectares, of which nearly half were forests owned by medium and small forestry companies. Some of the stands were burned by intense crown fires, which always spread fast, that burned the foliage and outer layer of the bark but left standing dead trees that could be salvage harvested before insect and decay processes rendered them unusable for commercial purposes. Unlike the typical operational programming models studied in the past, in this setting, companies can make insurance claims on part or all of the burnt forest, whereas the rest of the forest needs to be harvested before it loses its value. This problem is known as the salvage logging problem. The issue also has an important social component when considering medium and small forestry and logging companies: most of their personnel come from local communities, which have already been affected by the fires. Harvesting part of the remaining forest can allow them to keep their jobs longer and, hopefully, leave the company in a better financial situation if the harvesting areas are correctly selected. In this work, we present a novel mixed-integer optimization-based approach to support salvage logging decisions, which helps in the configuration of an operational-level harvesting and workforce assignment plan. Our model takes into account the payment from an insurance claim as well as future income from harvesting the remaining trees. The model also computes an optimal assignment of personnel to the different activities required. The objective is to improve the cash position of the company by the end of the harvest and ensure that the company is paying all its liabilities and maintaining personnel. We show how our model performs compared to the current decisions made by medium and small-sized forestry companies, and we study the specific case of a small forestry company located in Cauquenes, Chile, which used our model to decide its course of action.

Suggested Citation

  • Baselli, Gianluca & Contreras, Felipe & Lillo, Matías & Marín, Magdalena & Carrasco, Rodrigo A., 2020. "Optimal decisions for salvage logging after wildfires," Omega, Elsevier, vol. 96(C).
  • Handle: RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318308909
    DOI: 10.1016/j.omega.2019.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048318308909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2019.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafael Epstein & Ramiro Morales & Jorge Serón & Andres Weintraub, 1999. "Use of OR Systems in the Chilean Forest Industries," Interfaces, INFORMS, vol. 29(1), pages 7-29, February.
    2. Boukherroub, Tasseda & LeBel, Luc & Ruiz, Angel, 2017. "A framework for sustainable forest resource allocation: A Canadian case study," Omega, Elsevier, vol. 66(PB), pages 224-235.
    3. Hausman, Warren H & Sepehri, Mehran, 1985. "An integrated corporate planning model for forest-based industries," Omega, Elsevier, vol. 13(1), pages 29-38.
    4. David L. Martell, 2007. "Forest Fire Management," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 489-509, Springer.
    5. Troncoso, Juan J. & Garrido, Rodrigo A., 2005. "Forestry production and logistics planning: an analysis using mixed-integer programming," Forest Policy and Economics, Elsevier, vol. 7(4), pages 625-633, May.
    6. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    7. Chinneck, J. W. & Moll, R. H. H., 1995. "Processing network models for forest management," Omega, Elsevier, vol. 23(5), pages 499-510, October.
    8. Jones, HG, 1977. "The management of timber and related industries in Sweden," Omega, Elsevier, vol. 5(6), pages 689-697.
    9. Martell, David L. & Gunn, Eldon A. & Weintraub, Andres, 1998. "Forest management challenges for operational researchers," European Journal of Operational Research, Elsevier, vol. 104(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patricio Valdivieso & Pablo Neudorfer & Krister P. Andersson, 2021. "Causes and Consequences of Local Government Efforts to Reduce Risk and Adapt to Extreme Weather Events: Municipal Organizational Robustness," Sustainability, MDPI, vol. 13(14), pages 1-43, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    2. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    3. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    4. Bordón, Maximiliano R. & Montagna, Jorge M. & Corsano, Gabriela, 2018. "An exact mathematical formulation for the optimal log transportation," Forest Policy and Economics, Elsevier, vol. 95(C), pages 115-122.
    5. Del Río San José, Jorge & Reque Kilchenmann, José & Martínez De Azagra Paredes, Andrés, 2018. "To replant or to irrigate: A silvicultural decision model for afforestation projects," Forest Policy and Economics, Elsevier, vol. 93(C), pages 18-29.
    6. Pascual, Adrián, 2021. "Building Pareto Frontiers under tree-level forest planning using airborne laser scanning, growth models and spatial optimization," Forest Policy and Economics, Elsevier, vol. 128(C).
    7. Chauhan, Satyaveer S. & Frayret, Jean-Marc & LeBel, Luc, 2009. "Multi-commodity supply network planning in the forest supply chain," European Journal of Operational Research, Elsevier, vol. 196(2), pages 688-696, July.
    8. Pamela Alvarez & Jorge Vera, 2014. "Application of Robust Optimization to the Sawmill Planning Problem," Annals of Operations Research, Springer, vol. 219(1), pages 457-475, August.
    9. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    10. Fernando Veliz & Jean-Paul Watson & Andres Weintraub & Roger Wets & David Woodruff, 2015. "Stochastic optimization models in forest planning: a progressive hedging solution approach," Annals of Operations Research, Springer, vol. 232(1), pages 259-274, September.
    11. Kai L. Ross & Sándor F. Tóth & Weikko S. Jaross, 2018. "Forest Harvest Scheduling with Endogenous Road Costs," Interfaces, INFORMS, vol. 48(3), pages 260-270, June.
    12. Alan T. Murray & Ran Wei & Richard L. Church & Matthew R. Niblett, 2019. "Addressing risks and uncertainty in forest land use modeling," Journal of Geographical Systems, Springer, vol. 21(3), pages 319-338, September.
    13. Rafael Epstein & Andrés Weintraub & Pedro Sapunar & Enrique Nieto & Julian B. Sessions & John Sessions & Fernando Bustamante & Hugo Musante, 2006. "A Combinatorial Heuristic Approach for Solving Real-Size Machinery Location and Road Design Problems in Forestry Planning," Operations Research, INFORMS, vol. 54(6), pages 1017-1027, December.
    14. Mustapha Ouhimmou & Sophie D'Amours & Robert Beauregard & Daoud Ait-Kadi & Satyaveer Singh Chauhan, 2009. "Optimization Helps Shermag Gain Competitive Edge," Interfaces, INFORMS, vol. 39(4), pages 329-345, August.
    15. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    16. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    17. Bloemhof-Ruwaard, J. M. & Van Wassenhove, L. N. & Gabel, H. L. & Weaver, P. M., 1996. "An environmental life cycle optimization model for the European pulp and paper industry," Omega, Elsevier, vol. 24(6), pages 615-629, December.
    18. Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
    19. Satyaveer Chauhan & J.-M. Frayret & Luc LeBel, 2011. "Supply network planning in the forest supply chain with bucking decisions anticipation," Annals of Operations Research, Springer, vol. 190(1), pages 93-115, October.
    20. Yi Xiong & W. John Braun & X. Joan Hu, 2021. "Estimating duration distribution aided by auxiliary longitudinal measures in presence of missing time origin," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 388-412, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:96:y:2020:i:c:s0305048318308909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.