IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v107y2022ics0305048321001535.html
   My bibliography  Save this article

The impact of transportation optimisation on assembly line feeding

Author

Listed:
  • Adenipekun, Ebenezer Olatunde
  • Limère, Veronique
  • Schmid, Nico André

Abstract

In the era of mass customisation, feeding parts to mixed-model assembly lines has proven to be a complex task since customers increasingly demand personalised end products. Consequently, the number of parts required at a single assembly line is sharply increasing. On the one hand, part supply must be done with the aim of avoiding excessive logistical handling activities while managing space at the border of line carefully. Hence, different line feeding policies can be exploited. On the other hand, shortages in parts supply, which may result in line stoppage, must be avoided. To this end, different vehicle types such as forklifts, automated guided vehicles and tow trains must be orchestrated carefully. This study is the first to propose a mixed integer programming model that efficiently assigns each part at the same time to a feeding policy and a vehicle type, with the goal to minimise total feeding costs. To accurately quantify costs, the model selects specific routes and determines the fleet size of every vehicle type used. The model is complemented by valid inequalities and validated by solving artificial problem instances. Within the analysis, we demonstrate that optimal selection of vehicle types is superior to heuristic approaches and show that this optimisation-based approach is around 8% cheaper than the industrial standard.

Suggested Citation

  • Adenipekun, Ebenezer Olatunde & Limère, Veronique & Schmid, Nico André, 2022. "The impact of transportation optimisation on assembly line feeding," Omega, Elsevier, vol. 107(C).
  • Handle: RePEc:eee:jomega:v:107:y:2022:i:c:s0305048321001535
    DOI: 10.1016/j.omega.2021.102544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
    2. Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
    3. repec:dau:papers:123456789/14496 is not listed on IDEAS
    4. Daria Battini & Martina Calzavara & Alena Otto & Fabio Sgarbossa, 2017. "Preventing ergonomic risks with integrated planning on assembly line balancing and parts feeding," International Journal of Production Research, Taylor & Francis Journals, vol. 55(24), pages 7452-7472, December.
    5. Manzini, Massimo & Unglert, Johannes & Gyulai, Dávid & Colledani, Marcello & Jauregui-Becker, Juan Manuel & Monostori, László & Urgo, Marcello, 2018. "An integrated framework for design, management and operation of reconfigurable assembly systems," Omega, Elsevier, vol. 78(C), pages 69-84.
    6. Battini, Daria & Faccio, Maurizio & Persona, Alessandro & Sgarbossa, Fabio, 2009. "Design of the optimal feeding policy in an assembly system," International Journal of Production Economics, Elsevier, vol. 121(1), pages 233-254, September.
    7. Mustapha Sali & Evren Sahin & Alain Patchong, 2015. "An empirical assessment of the performances of three line feeding modes used in the automotive sector: line stocking vs. kitting vs. sequencing," Post-Print hal-01508414, HAL.
    8. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    9. Bozer, Yavuz A. & McGinnis, Leon F., 1992. "Kitting versus line stocking: A conceptual framework and a descriptive model," International Journal of Production Economics, Elsevier, vol. 28(1), pages 1-19, November.
    10. Emde, Simon & Boysen, Nils, 2012. "Optimally routing and scheduling tow trains for JIT-supply of mixed-model assembly lines," European Journal of Operational Research, Elsevier, vol. 217(2), pages 287-299.
    11. Amir Nourmohammadi & Hamidreza Eskandari & Masood Fathi & Amos H.C. Ng, 2021. "Integrated locating in-house logistics areas and transport vehicles selection problem in assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 59(2), pages 598-616, January.
    12. Emde, Simon & Fliedner, Malte & Boysen, Nils, 2012. "Optimally loading tow trains for just-in-time supply of mixed-model assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79434, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Antonio Casimiro Caputo & Pacifico Marcello Pelagagge & Paolo Salini, 2018. "Selection of assembly lines feeding policies based on parts features and scenario conditions," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1208-1232, February.
    14. Mustapha Sali & Evren Sahin & Alain Patchong, 2015. "An empirical assessment of the performances of three line feeding modes used in the automotive sector: line stocking vs. kitting vs. sequencing," International Journal of Production Research, Taylor & Francis Journals, vol. 53(5), pages 1439-1459, March.
    15. Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
    16. Nico André Schmid & Veronique Limère, 2019. "A classification of tactical assembly line feeding problems," International Journal of Production Research, Taylor & Francis Journals, vol. 57(24), pages 7586-7609, December.
    17. Daria Battini & Maurizio Faccio & Alessandro Persona & Fabio Sgarbossa, 2010. "Framework to optimise the inventory centralisation/ decentralisation degree and feeding policy in assembly systems," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 6(2), pages 184-205.
    18. Abbas, Mohamed & ElMaraghy, Hoda, 2018. "Co-platforming of products and assembly systems," Omega, Elsevier, vol. 78(C), pages 5-20.
    19. Maurizio Faccio & Mauro Gamberi & Marco Bortolini & Francesco Pilati, 2018. "Macro and micro-logistic aspects in defining the parts-feeding policy in mixed-model assembly systems," International Journal of Services and Operations Management, Inderscience Enterprises Ltd, vol. 31(4), pages 433-462.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Nico André & Limère, Veronique & Raa, Birger, 2021. "Mixed model assembly line feeding with discrete location assignments and variable station space," Omega, Elsevier, vol. 102(C).
    2. Emilio Moretti & Elena Tappia & Veronique Limère & Marco Melacini, 2021. "Exploring the application of machine learning to the assembly line feeding problem," Operations Management Research, Springer, vol. 14(3), pages 403-419, December.
    3. Emilio Moretti & Elena Tappia & Martina Mauri & Marco Melacini, 2022. "A performance model for mobile robot-based part feeding systems to supermarkets," Flexible Services and Manufacturing Journal, Springer, vol. 34(3), pages 580-613, September.
    4. Mustapha Sali & Evren Sahin, 2016. "Line feeding optimization for Just in Time assembly lines: an application to the automotive industry," Post-Print hal-01265041, HAL.
    5. Sali, Mustapha & Sahin, Evren, 2016. "Line feeding optimization for Just in Time assembly lines: An application to the automotive industry," International Journal of Production Economics, Elsevier, vol. 174(C), pages 54-67.
    6. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    7. Sternatz, Johannes, 2015. "The joint line balancing and material supply problem," International Journal of Production Economics, Elsevier, vol. 159(C), pages 304-318.
    8. Stefan Fedtke & Nils Boysen & Patrick Schumacher, 2023. "In-line kitting for part feeding of assembly lines: workload balancing and storage assignment to reduce the workers’ walking effort," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 717-758, September.
    9. Li, Mingxing & Huang, George Q., 2021. "Production-intralogistics synchronization of industry 4.0 flexible assembly lines under graduation intelligent manufacturing system," International Journal of Production Economics, Elsevier, vol. 241(C).
    10. Daria Battini & Nils Boysen & Simon Emde, 2013. "Just-in-Time supermarkets for part supply in the automobile industry," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 209-217, July.
    11. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    12. Emde, Simon & Gendreau, Michel, 2017. "Scheduling in-house transport vehicles to feed parts to automotive assembly lines," European Journal of Operational Research, Elsevier, vol. 260(1), pages 255-267.
    13. Baller, Reinhard & Hage, Steffen & Fontaine, Pirmin & Spinler, Stefan, 2020. "The assembly line feeding problem: An extended formulation with multiple line feeding policies and a case study," International Journal of Production Economics, Elsevier, vol. 222(C).
    14. Hanson, Robin & Finnsgård, Christian, 2014. "Impact of unit load size on in-plant materials supply efficiency," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 46-52.
    15. Boysen, Nils & Emde, Simon, 2014. "Scheduling the part supply of mixed-model assembly lines in line-integrated supermarkets," European Journal of Operational Research, Elsevier, vol. 239(3), pages 820-829.
    16. Maurizio Faccio & Mauro Gamberi & Alessandro Persona & Alberto Regattieri & Fabio Sgarbossa, 2013. "Design and simulation of assembly line feeding systems in the automotive sector using supermarket, kanbans and tow trains: a general framework," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 24(2), pages 187-208, July.
    17. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    18. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    19. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2020. "Loading tow trains ergonomically for just-in-time part supply," European Journal of Operational Research, Elsevier, vol. 284(1), pages 325-344.
    20. Diefenbach, Heiko & Emde, Simon & Glock, Christoph H., 2023. "Multi-depot electric vehicle scheduling in in-plant production logistics considering non-linear charging models," European Journal of Operational Research, Elsevier, vol. 306(2), pages 828-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:107:y:2022:i:c:s0305048321001535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.