IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v105y2021ics0305048321001079.html
   My bibliography  Save this article

Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition

Author

Listed:
  • Han, Jialin
  • Zhang, Jiaxiang
  • Zeng, Bing
  • Mao, Mingsong

Abstract

This paper focuses on optimizing a dynamic facility location-allocation problem with respect to a real-life agricultural machinery maintenance service network that is designed to achieve the prompt and reliable response to malfunctioning agricultural machinery during harvest. We consider a busy farming season divided into several time periods in which the problem is to determine where to locate temporary maintenance stations (TMSs) as well as identifying how many capacitated service-providing facilities to allocate to each TMS to satisfy maintenance demands. The problem is formulated as a mixed integer program (MIP) that seeks to minimize the total service mileage between TMSs and demand points. Additionally, considering that the service flow from a TMS to a demand point in this type of work takes place between potential district locations rather than discrete vertices, we use regional contiguity constraints to enforce agricultural production areas served by a TMS as geographically connected. To solve our MIP problem, an exact algorithm based on Benders decomposition is then developed along with several refinements. Lastly, our model and methodology are illustrated in the handling of a real-world problem in China. Computational results are presented that analyze the optimized facility location-allocation plan, examine the impact of selected parameters, demonstrate the advantage of implementing the contiguity constraints and discuss the performance of solution algorithm.

Suggested Citation

  • Han, Jialin & Zhang, Jiaxiang & Zeng, Bing & Mao, Mingsong, 2021. "Optimizing dynamic facility location-allocation for agricultural machinery maintenance using Benders decomposition," Omega, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001079
    DOI: 10.1016/j.omega.2021.102498
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048321001079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2021.102498?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Garcia Martin, Patricia Carolina & Schroeder, Andreas & Ziaee Bigdeli, Ali, 2019. "The value architecture of servitization: Expanding the research scope," Journal of Business Research, Elsevier, vol. 104(C), pages 438-449.
    2. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    3. Vatsa, Amit Kumar & Jayaswal, Sachin, 2016. "A new formulation and Benders decomposition for the multi-period maximal covering facility location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 251(2), pages 404-418.
    4. Zhang, Anpeng & Kang, Jee Eun & Kwon, Changhyun, 2017. "Incorporating demand dynamics in multi-period capacitated fast-charging location planning for electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 5-29.
    5. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    6. Raghavan, S. & Sahin, Mustafa & Salman, F. Sibel, 2019. "The capacitated mobile facility location problem," European Journal of Operational Research, Elsevier, vol. 277(2), pages 507-520.
    7. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    8. Elena Fernández & Mercedes Landete, 2015. "Fixed-Charge Facility Location Problems," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 47-77, Springer.
    9. Guastaroba, G. & Speranza, M.G., 2014. "A heuristic for BILP problems: The Single Source Capacitated Facility Location Problem," European Journal of Operational Research, Elsevier, vol. 238(2), pages 438-450.
    10. Akpinar, Sener & Elmi, Atabak & Bektaş, Tolga, 2017. "Combinatorial Benders cuts for assembly line balancing problems with setups," European Journal of Operational Research, Elsevier, vol. 259(2), pages 527-537.
    11. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2018. "A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities," Omega, Elsevier, vol. 74(C), pages 122-134.
    12. Stefan Nickel & Francisco Saldanha Gama, 2015. "Multi-Period Facility Location," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 289-310, Springer.
    13. Han, Jialin & Hu, Yaoguang & Mao, Mingsong & Wan, Shuping, 2020. "A multi-objective districting problem applied to agricultural machinery maintenance service network," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1120-1130.
    14. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    15. Correia, Isabel & Melo, Teresa, 2016. "Multi-period capacitated facility location under delayed demand satisfaction," European Journal of Operational Research, Elsevier, vol. 255(3), pages 729-746.
    16. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    17. Pasquale Avella & Maurizio Boccia, 2009. "A cutting plane algorithm for the capacitated facility location problem," Computational Optimization and Applications, Springer, vol. 43(1), pages 39-65, May.
    18. Xing, Yijun & Liu, Yipeng & Tarba, Shlomo & Cooper, Sir Cary L., 2017. "Servitization in mergers and acquisitions: Manufacturing firms venturing from emerging markets into advanced economies," International Journal of Production Economics, Elsevier, vol. 192(C), pages 9-18.
    19. Mariel, Katharina & Minner, Stefan, 2017. "Benders decomposition for a strategic network design problem under NAFTA local content requirements," Omega, Elsevier, vol. 68(C), pages 62-75.
    20. Marín, Alfredo & Martínez-Merino, Luisa I. & Rodríguez-Chía, Antonio M. & Saldanha-da-Gama, Francisco, 2018. "Multi-period stochastic covering location problems: Modeling framework and solution approach," European Journal of Operational Research, Elsevier, vol. 268(2), pages 432-449.
    21. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    22. Yang, Zhen & Chen, Haoxun & Chu, Feng & Wang, Nengmin, 2019. "An effective hybrid approach to the two-stage capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 275(2), pages 467-480.
    23. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    24. Fischetti, Matteo & Ljubić, Ivana & Sinnl, Markus, 2016. "Benders decomposition without separability: A computational study for capacitated facility location problems," European Journal of Operational Research, Elsevier, vol. 253(3), pages 557-569.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raoul Fonkoua Fofou & Zhigang Jiang & Qingshan Gong & Yihua Yang, 2022. "A Decision-Making Model for Remanufacturing Facility Location in Underdeveloped Countries: A Capacitated Facility Location Problem Approach," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    2. Kahr, Michael, 2022. "Determining locations and layouts for parcel lockers to support supply chain viability at the last mile," Omega, Elsevier, vol. 113(C).
    3. Zhu, Xuedong & Son, Junbo & Zhang, Xi & Wu, Jianguo, 2023. "Constraint programming and logic-based Benders decomposition for the integrated process planning and scheduling problem," Omega, Elsevier, vol. 117(C).
    4. Rahmati, Reza & Neghabi, Hossein & Bashiri, Mahdi & Salari, Majid, 2023. "Stochastic regional-based profit-maximizing hub location problem: A sustainable overview," Omega, Elsevier, vol. 121(C).
    5. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    6. Chun-Yuan Lin & Mosiur Rahaman & Massoud Moslehpour & Sourasis Chattopadhyay & Varsha Arya, 2023. "Web Semantic-Based MOOP Algorithm for Facilitating Allocation Problems in the Supply Chain Domain," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    2. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.
    3. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    4. Murat Şahin & Talip Kellegöz, 2023. "Benders’ decomposition based exact solution method for multi-manned assembly line balancing problem with walking workers," Annals of Operations Research, Springer, vol. 321(1), pages 507-540, February.
    5. Weninger, Dieter & Wolsey, Laurence A., 2023. "Benders-type branch-and-cut algorithms for capacitated facility location with single-sourcing," European Journal of Operational Research, Elsevier, vol. 310(1), pages 84-99.
    6. Avella, P. & Boccia, M. & Mattia, S. & Rossi, F., 2021. "Weak flow cover inequalities for the capacitated facility location problem," European Journal of Operational Research, Elsevier, vol. 289(2), pages 485-494.
    7. Vatsa, Amit Kumar & Jayaswal, Sachin, 2021. "Capacitated multi-period maximal covering location problem with server uncertainty," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1107-1126.
    8. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    9. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    10. Correia, Isabel & Melo, Teresa, 2019. "Dynamic facility location problem with modular capacity adjustments under uncertainty," Technical Reports on Logistics of the Saarland Business School 17, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    11. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    12. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    13. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.
    14. Fischetti, Matteo & Ljubić, Ivana & Sinnl, Markus, 2016. "Benders decomposition without separability: A computational study for capacitated facility location problems," European Journal of Operational Research, Elsevier, vol. 253(3), pages 557-569.
    15. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    16. Fang, Kan & Wang, Shijin & Pinedo, Michael L. & Chen, Lin & Chu, Feng, 2021. "A combinatorial Benders decomposition algorithm for parallel machine scheduling with working-time restrictions," European Journal of Operational Research, Elsevier, vol. 291(1), pages 128-146.
    17. Christensen, Tue Rauff Lind & Klose, Andreas, 2021. "A fast exact method for the capacitated facility location problem with differentiable convex production costs," European Journal of Operational Research, Elsevier, vol. 292(3), pages 855-868.
    18. Yantong Li & Jean-François Côté & Leandro Callegari-Coelho & Peng Wu, 2022. "Novel Formulations and Logic-Based Benders Decomposition for the Integrated Parallel Machine Scheduling and Location Problem," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1048-1069, March.
    19. Christian Tilk & Michael Forbes, 2019. "Branch-and-Cut for the Active-Passive Vehicle Routing Problem," Working Papers 1915, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    20. Mancini, Simona & Gansterer, Margaretha, 2021. "Vehicle scheduling for rental-with-driver services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:105:y:2021:i:c:s0305048321001079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.