IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v19y2020ics240585131930073x.html
   My bibliography  Save this article

The impact of oil shocks on innovation for alternative sources of energy: Is there an asymmetric response when oil prices go up or down?

Author

Listed:
  • Nunes, Inês Carrilho
  • Catalão-Lopes, Margarida

Abstract

Do lower oil prices translate into less innovation more than higher oil prices translate into more innovation? Is a long-run sustainability transition taking place or are countries just encouraging innovation in alternative energies in a short-run approach, given the conditions of fossil fuel markets? In this paper we apply negative binomial regression to a panel data set of the 10 most innovative countries concerning alternative energy technologies, in order to assess the impact of oil price variations on this innovation, using counts of patent applications as a proxy. The data includes the declining prices period after 2014. The results show that the impact of oil prices on patent applications for alternative energies is asymmetric: when prices are decreasing the reduction in innovation is more pronounced than the expansion when prices are rising. This result may denote some absence of commitment to find sustainable alternatives to the use of fossil fuels.

Suggested Citation

  • Nunes, Inês Carrilho & Catalão-Lopes, Margarida, 2020. "The impact of oil shocks on innovation for alternative sources of energy: Is there an asymmetric response when oil prices go up or down?," Journal of Commodity Markets, Elsevier, vol. 19(C).
  • Handle: RePEc:eee:jocoma:v:19:y:2020:i:c:s240585131930073x
    DOI: 10.1016/j.jcomm.2019.100108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S240585131930073X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2019.100108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miyamoto, Mai & Takeuchi, Kenji, 2019. "Climate agreement and technology diffusion: Impact of the Kyoto Protocol on international patent applications for renewable energy technologies," Energy Policy, Elsevier, vol. 129(C), pages 1331-1338.
    2. Dechezlepretre, Antoine & Glachant, Matthieu & Hascic, Ivan & Johnstone, Nick & Meniere, Yann, 2009. "Invention and Transfer of Climate Change Mitigation Technologies on a Global Scale: A Study Drawing on Patent Data," Sustainable Development Papers 54361, Fondazione Eni Enrico Mattei (FEEM).
    3. Triguero, Angela & Moreno-Mondéjar, Lourdes & Davia, María A., 2014. "The influence of energy prices on adoption of clean technologies and recycling: Evidence from European SMEs," Energy Economics, Elsevier, vol. 46(C), pages 246-257.
    4. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    5. Cameron, A Colin & Trivedi, Pravin K, 1986. "Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators and Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 1(1), pages 29-53, January.
    6. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    7. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    8. Lutz Kilian & Robert J. Vigfusson, 2011. "Are the responses of the U.S. economy asymmetric in energy price increases and decreases?," Quantitative Economics, Econometric Society, vol. 2(3), pages 419-453, November.
    9. Sebastião Messias Marques & Margarida Catalão-Lopes, 2015. "Portuguese stock market returns and oil price variations," Applied Economics Letters, Taylor & Francis Journals, vol. 22(7), pages 515-520, May.
    10. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    11. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    12. Quintino, António & Catalão-Lopes, Margarida & Lourenço, João Carlos, 2019. "Can switching from gasoline to aromatics mitigate the price risk of refineries?," Energy Policy, Elsevier, vol. 134(C).
    13. Noailly, Joëlle & Smeets, Roger, 2015. "Directing technical change from fossil-fuel to renewable energy innovation: An application using firm-level patent data," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 15-37.
    14. Knut Anton Mork & Oystein Olsen & Hans Terje Mysen, 1994. "Macroeconomic Responses to Oil Price Increases and Decreases in Seven OECD Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 19-36.
    15. Kuck, Konstantin & Schweikert, Karsten, 2017. "A Markov regime-switching model of crude oil market integration," Journal of Commodity Markets, Elsevier, vol. 6(C), pages 16-31.
    16. Kim, Jung Eun, 2014. "Energy security and climate change: How oil endowment influences alternative vehicle innovation," Energy Policy, Elsevier, vol. 66(C), pages 400-410.
    17. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    18. Yann Ménière & Antoine Dechezleprêtre & Matthieu Glachant & Ivan Hascic & N. Johnstone, 2011. "Invention and transfer of climate change mitigation technologies: a study drawing on patent data," Post-Print hal-00869795, HAL.
    19. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    20. Mann, Janelle & Sephton, Peter, 2016. "Global relationships across crude oil benchmarks," Journal of Commodity Markets, Elsevier, vol. 2(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carrilho-Nunes, Inês & Catalão-Lopes, Margarida, 2022. "The effects of environmental policy and technology transfer on GHG emissions: The case of Portugal," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 255-264.
    2. He, Jiaxin & Li, Jingyi & Zhao, Daiqing & Chen, Xing, 2022. "Does oil price affect corporate innovation? Evidence from new energy vehicle enterprises in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Wang, Jun-Zhuo & Feng, Gen-Fu & Yin, Hua-Tang & Chang, Chun-Ping, 2023. "Toward sustainable development: Does the rising oil price stimulate innovation in climate change mitigation technologies?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 569-583.
    4. Wu, Wenhan & Wu, Wenzhuo & Wu, Kouhua & Ding, Chen, 2022. "The nexus between green innovations and natural resources commodity prices in China," Resources Policy, Elsevier, vol. 78(C).
    5. Hu, Jinyan & Wang, Kai-Hua & Su, Chi Wei & Umar, Muhammad, 2022. "Oil price, green innovation and institutional pressure: A China's perspective," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Costantini, Valeria & Crespi, Francesco & Palma, Alessandro, 2017. "Characterizing the policy mix and its impact on eco-innovation: A patent analysis of energy-efficient technologies," Research Policy, Elsevier, vol. 46(4), pages 799-819.
    2. Clement Bonnet, 2020. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers hal-02971680, HAL.
    3. Clément Bonnet, 2016. "Measuring Knowledge with Patent Data: an Application to Low Carbon Energy Technologies," EconomiX Working Papers 2016-37, University of Paris Nanterre, EconomiX.
    4. Clément Bonnet, 2017. "Measuring Inventive Performance with Patent Data: an Application to Low Carbon Energy Technologies," Working Papers 1709, Chaire Economie du climat.
    5. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    6. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    7. Guillouzouic-Le Corff, Arthur, 2018. "Did oil prices trigger an innovation burst in biofuels?," Energy Economics, Elsevier, vol. 75(C), pages 547-559.
    8. Geoffroy G Dolphin & Michael G Pollitt, 2020. "Identifying innovative actors in the Electricity Supply Industry using machine learning: an application to UK patent data," Working Papers EPRG2004, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    9. Massimiliano Mazzanti & Antonio Musolesi, 2020. "Modeling Green Knowledge Production and Environmental Policies with Semiparametric Panel Data Regression models," SEEDS Working Papers 1420, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2020.
    10. Valeria Costantini & Francesco Crespi & Alessandro Palma, 2015. "Characterizing the policy mix and its impact on eco-innovation in energy-efficient technologies," SEEDS Working Papers 1115, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2015.
    11. Herman, Kyle S. & Xiang, Jun, 2019. "Induced innovation in clean energy technologies from foreign environmental policy stringency?," Technological Forecasting and Social Change, Elsevier, vol. 147(C), pages 198-207.
    12. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    13. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2018. "Can Direct Regulations Spur Innovations in Environmental Technologies? A Study on Firm‐Level Patenting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 338-371, April.
    14. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    15. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    16. Hémous, David & Dechezleprêtre, Antoine & Olsen, Morten & Zanella, carlo, 2019. "Automating Labor: Evidence from Firm-level Patent Data," CEPR Discussion Papers 14249, C.E.P.R. Discussion Papers.
    17. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    18. Kristoffer Palage & Robert Lundmark & Patrik Söderholm, 2019. "The innovation effects of renewable energy policies and their interaction: the case of solar photovoltaics," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(2), pages 217-254, April.
    19. Fabrizio, Kira R. & Poczter, Sharon & Zelner, Bennet A., 2017. "Does innovation policy attract international competition? Evidence from energy storage," Research Policy, Elsevier, vol. 46(6), pages 1106-1117.
    20. Feng, Siyu & Lazkano, Itziar, 2022. "Innovation trends in electricity storage: What drives global innovation?," Energy Policy, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:19:y:2020:i:c:s240585131930073x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.