IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v91y2004i1p107-118.html
   My bibliography  Save this article

Variance component testing in semiparametric mixed models

Author

Listed:
  • Zhu, Zhongyi
  • Fung, Wing K.

Abstract

It is of considerable interest to test for heteroscedasticity in statistical studies. In this paper, we investigate such a problem under the framework of a semiparametric mixed model. A score test is proposed for the hypothesis that all the variance components are zero. We establish the asymptotic property of the test, and examine its performance in a simulation study. The test is illustrated with the analysis of a longitudinal study of measurements of serum creatinine.

Suggested Citation

  • Zhu, Zhongyi & Fung, Wing K., 2004. "Variance component testing in semiparametric mixed models," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 107-118, October.
  • Handle: RePEc:eee:jmvana:v:91:y:2004:i:1:p:107-118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00087-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey S. Simonoff & Chih‐Ling Tsai, 1994. "Use of Modified Profile Likelihood for Improved Tests of Constancy of Variance in Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(2), pages 357-370, June.
    2. Philip J. Smith & Daniel F. Heitjan, 1993. "Testing and Adjusting for Departures from Nominal Dispersion in Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(1), pages 31-41, March.
    3. Oyet, Alwell J. & Sutradhar, Brajendra, 2003. "Testing variances in wavelet regression models," Statistics & Probability Letters, Elsevier, vol. 61(1), pages 97-109, January.
    4. X. Lin & D. Zhang, 1999. "Inference in generalized additive mixed modelsby using smoothing splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 381-400, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
    2. Juvêncio Nobre & Julio Singer & Pranab Sen, 2013. "U-tests for variance components in linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 580-605, November.
    3. Chen, Fei & Li, Zaixing & Shi, Lei & Zhu, Lixing, 2015. "Inference for mixed models of ANOVA type with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 382-401.
    4. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.
    5. Li, Zaixing, 2015. "A residual-based test for variance components in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 73-78.
    6. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    2. Zhu, Xuehu & Chen, Fei & Guo, Xu & Zhu, Lixing, 2016. "Heteroscedasticity testing for regression models: A dimension reduction-based model adaptive approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 263-283.
    3. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Alexander März & Nadja Klein & Thomas Kneib & Oliver Musshoff, 2016. "Analysing farmland rental rates using Bayesian geoadditive quantile regression," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(4), pages 663-698.
    5. Patrick Opiyo Owili & Wei-Hung Lien & Miriam Adoyo Muga & Tang-Huang Lin, 2017. "The Associations between Types of Ambient PM 2.5 and Under-Five and Maternal Mortality in Africa," IJERPH, MDPI, vol. 14(4), pages 1-20, March.
    6. Liangjun Chen & Ya Wang & Zhengwang Wu & Yue Shan & Tengfei Li & Sheng-Che Hung & Lei Xing & Hongtu Zhu & Li Wang & Weili Lin & Gang Li, 2023. "Four-dimensional mapping of dynamic longitudinal brain subcortical development and early learning functions in infants," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Ayma Anza, Diego Armando & Durbán, María & Lee, Dae-Jin & Van de Kassteele, Jan, 2016. "Modelling latent trends from spatio-temporally grouped data using composite link mixed models," DES - Working Papers. Statistics and Econometrics. WS 23448, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Ali M. Mosammam & Jorge Mateu, 2018. "A penalized likelihood method for nonseparable space–time generalized additive models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 333-357, July.
    9. Belitz, Christiane & Lang, Stefan, 2008. "Simultaneous selection of variables and smoothing parameters in structured additive regression models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 61-81, September.
    10. Hannes Matuschek & Reinhold Kliegl & Matthias Holschneider, 2015. "Smoothing Spline ANOVA Decomposition of Arbitrary Splines: An Application to Eye Movements in Reading," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-15, March.
    11. Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
    12. Takuma Yoshida & Kanta Naito, 2014. "Asymptotics for penalised splines in generalised additive models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 269-289, June.
    13. Wataru Sakamoto, 2007. "MARS: selecting basis functions and knots with an empirical Bayes method," Computational Statistics, Springer, vol. 22(4), pages 583-597, December.
    14. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    15. Yiqiang Lu & Riquan Zhang, 2009. "Smoothing spline estimation of generalised varying-coefficient mixed model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 815-825.
    16. Isabel Proença & Stefan Sperlich & Duygu Savaşcı, 2015. "Semi-mixed effects gravity models for bilateral trade," Empirical Economics, Springer, vol. 48(1), pages 361-387, February.
    17. Masayoshi Oka, 2022. "Census-Tract-Level Median Household Income and Median Family Income Estimates: A Unidimensional Measure of Neighborhood Socioeconomic Status?," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    18. Feng-Chang Xie & Jin-Guan Lin & Bo-Cheng Wei, 2010. "Testing for varying zero-inflation and dispersion in generalized Poisson regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1509-1522.
    19. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    20. Mariana C. Araújo & Audrey H. M. A. Cysneiros & Lourdes C. Montenegro, 2020. "Improved heteroskedasticity likelihood ratio tests in symmetric nonlinear regression models," Statistical Papers, Springer, vol. 61(1), pages 167-188, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:91:y:2004:i:1:p:107-118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.