IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v84y2003i1p145-172.html
   My bibliography  Save this article

Robust factor analysis

Author

Listed:
  • Pison, Greet
  • Rousseeuw, Peter J.
  • Filzmoser, Peter
  • Croux, Christophe

Abstract

Our aim is to construct a factor analysis method that can resist the effect of outliers. For this we start with a highly robust initial covariance estimator, after which the factors can be obtained from maximum likelihood or from principal factor analysis (PFA). We find that PFA based on the minimum covariance determinant scatter matrix works well. We also derive the influence function of the PFA method based on either the classical scatter matrix or a robust matrix. These results are applied to the construction of a new type of empirical influence function (EIF), which is very effective for detecting influential data. To facilitate the interpretation, we compute a cutoff value for this EIF. Our findings are illustrated with several real data examples.

Suggested Citation

  • Pison, Greet & Rousseeuw, Peter J. & Filzmoser, Peter & Croux, Christophe, 2003. "Robust factor analysis," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 145-172, January.
  • Handle: RePEc:eee:jmvana:v:84:y:2003:i:1:p:145-172
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(02)00007-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Mooijaart & P.M. Bentler, 1991. "Robustness of normal theory statistics in structural equation models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(2), pages 159-171, June.
    2. Jos Berge & Henk Kiers, 1991. "A numerical approach to the approximate and the exact minimum rank of a covariance matrix," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 309-315, June.
    3. Croux, Christophe & Haesbroeck, Gentiane, 1999. "Influence Function and Efficiency of the Minimum Covariance Determinant Scatter Matrix Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 161-190, November.
    4. Yutaka Tanaka & Yoshimasa Odaka, 1989. "Influential observations in principal factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 54(3), pages 475-485, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sik-Yum Lee & S. Wang, 1996. "Sensitivity analysis of structural equation models," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 93-108, March.
    2. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    3. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    4. Stegeman, Alwin, 2016. "A new method for simultaneous estimation of the factor model parameters, factor scores, and unique parts," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 189-203.
    5. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.
    6. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    7. Jos Berge & Gregor Sočan, 2004. "The greatest lower bound to the reliability of a test and the hypothesis of unidimensionality," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 613-625, December.
    8. Sik-Yum Lee & Liang Xu, 2003. "Case-Deletion Diagnostics for Factor Analysis Models With Continuous and Ordinal Categorical Data," Sociological Methods & Research, , vol. 31(3), pages 389-419, February.
    9. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    10. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    11. Gervini, Daniel, 2003. "A robust and efficient adaptive reweighted estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 116-144, January.
    12. Sharifah Soaad Syed Yahaya & Hazlina Ali & Zurni Omar, 2011. "An Alternative Hotelling T^2 Control Chart Based on Minimum Vector Variance (MVV)," Modern Applied Science, Canadian Center of Science and Education, vol. 5(4), pages 132-132, August.
    13. Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
    14. Yunlu Jiang & Canhong Wen & Xueqin Wang, 2018. "Adaptive Exponential Power Depth with Application to Classification," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 466-480, October.
    15. Sik-Yum Lee & Liang Xu, 2003. "On local influence analysis of full information item factor models," Psychometrika, Springer;The Psychometric Society, vol. 68(3), pages 339-360, September.
    16. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    17. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    18. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    19. Ke-Hai Yuan & Yubin Tian & Hirokazu Yanagihara, 2015. "Empirical Correction to the Likelihood Ratio Statistic for Structural Equation Modeling with Many Variables," Psychometrika, Springer;The Psychometric Society, vol. 80(2), pages 379-405, June.
    20. Xi Luo, 2011. "Recovering Model Structures from Large Low Rank and Sparse Covariance Matrix Estimation," Papers 1111.1133, arXiv.org, revised Mar 2013.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:84:y:2003:i:1:p:145-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.