Advanced Search
MyIDEAS: Login

On the distribution of penalized maximum likelihood estimators: The LASSO, SCAD, and thresholding

Contents:

Author Info

  • Pötscher, Benedikt M.
  • Leeb, Hannes

Abstract

We study the distributions of the LASSO, SCAD, and thresholding estimators, in finite samples and in the large-sample limit. The asymptotic distributions are derived for both the case where the estimators are tuned to perform consistent model selection and for the case where the estimators are tuned to perform conservative model selection. Our findings complement those of Knight and Fu [K. Knight, W. Fu, Asymptotics for lasso-type estimators, Annals of Statistics 28 (2000) 1356-1378] and Fan and Li [J. Fan, R. Li, Variable selection via non-concave penalized likelihood and its oracle properties, Journal of the American Statistical Association 96 (2001) 1348-1360]. We show that the distributions are typically highly non-normal regardless of how the estimator is tuned, and that this property persists in large samples. The uniform convergence rate of these estimators is also obtained, and is shown to be slower than n-1/2 in case the estimator is tuned to perform consistent model selection. An impossibility result regarding estimation of the estimators' distribution function is also provided.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6WK9-4WNGW5K-1/2/1704e367386817089a2daed1589a6c09
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Multivariate Analysis.

Volume (Year): 100 (2009)
Issue (Month): 9 (October)
Pages: 2065-2082

as in new window
Handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2065-2082

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
Web: https://shop.elsevier.com/order?id=622892&ref=622892_01_ooc_1&version=01

Related research

Keywords: primary; 62J07; 62J05; 62F11; 62F12; 62E15 Penalized maximum likelihood LASSO SCAD Thresholding Post-model-selection estimator Finite-sample distribution Asymptotic distribution Oracle property Estimation of distribution Uniform consistency;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Pötscher, Benedikt M., 2006. "The Distribution of Model Averaging Estimators and an Impossibility Result Regarding Its Estimation," MPRA Paper 73, University Library of Munich, Germany, revised Jul 2006.
  2. Leeb, Hannes & Potscher, Benedikt M., 2008. "Sparse estimators and the oracle property, or the return of Hodges' estimator," Journal of Econometrics, Elsevier, vol. 142(1), pages 201-211, January.
  3. Kabaila, Paul, 1995. "The Effect of Model Selection on Confidence Regions and Prediction Regions," Econometric Theory, Cambridge University Press, vol. 11(03), pages 537-549, June.
  4. Knight, Keith, 2008. "Shrinkage Estimation For Nearly Singular Designs," Econometric Theory, Cambridge University Press, vol. 24(02), pages 323-337, April.
  5. Leeb, Hannes & P tscher, Benedikt M., 2006. "Performance Limits For Estimators Of The Risk Or Distribution Of Shrinkage-Type Estimators, And Some General Lower Risk-Bound Results," Econometric Theory, Cambridge University Press, vol. 22(01), pages 69-97, February.
  6. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
  7. Hannes Leeb & Benedikt M. Potscher, 2003. "Can One Estimate the Conditional Distribution of Post-Model-Selection Estimators?," Cowles Foundation Discussion Papers 1444, Cowles Foundation for Research in Economics, Yale University.
  8. Rudolf Beran, 1997. "Diagnosing Bootstrap Success," Annals of the Institute of Statistical Mathematics, Springer, vol. 49(1), pages 1-24, March.
  9. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(02), pages 163-185, June.
  10. Hannes Leeb & Benedikt M. Poetscher, 2000. "The Finite-Sample Distribution of Post-Model-Selection Estimators, and Uniform Versus Non-Uniform Approximations," Econometrics 0004001, EconWPA.
  11. Leeb, Hannes & P tscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(01), pages 21-59, February.
  12. repec:cup:etheor:v:11:y:1995:i:3:p:537-49 is not listed on IDEAS
  13. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kascha, Christian & Trenkler, Carsten, 2011. "Bootstrapping the likelihood ratio cointegration test in error correction models with unknown lag order," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1008-1017, February.
  2. Anders Bredahl Kock, 2012. "On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions," CREATES Research Papers 2012-05, School of Economics and Management, University of Aarhus.
  3. Pötscher, Benedikt M. & Schneider, Ulrike, 2007. "On the distribution of the adaptive LASSO estimator," MPRA Paper 6913, University Library of Munich, Germany.
  4. Adam McCloskey, 2012. "Bonferroni-Based Size-Correction for Nonstandard Testing Problems," Working Papers 2012-16, Brown University, Department of Economics.
  5. Anders Bredahl Kock, 2013. "Oracle inequalities for high-dimensional panel data models," CREATES Research Papers 2013-20, School of Economics and Management, University of Aarhus.
  6. Leeb, Hannes & Pötscher, Benedikt M. & Ewald, Karl, 2014. "On various confidence intervals post-model-selection," MPRA Paper 52858, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:9:p:2065-2082. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.