IDEAS home Printed from https://ideas.repec.org/a/eee/jaitra/v56y2016ipap12-18.html
   My bibliography  Save this article

Comparing the modeling of delay propagation in the US and European air traffic networks

Author

Listed:
  • Campanelli, Bruno
  • Fleurquin, Pablo
  • Arranz, Andrés
  • Etxebarria, Izaro
  • Ciruelos, Carla
  • Eguíluz, Víctor M.
  • Ramasco, José J.

Abstract

Complex Systems are those in which a very large number of elements interact, usually in a non-linear fashion, producing emergent behaviors that are typically difficult to predict. Air transportation systems fall in this category, with a large number of aircraft following a pre-scheduled program. It has been shown that it is possible to understand and forecast delays propagation in these systems. The objective of this analysis is to compare the modeling in the US and in the European air traffic networks, analyzing the propagation of delays due to failures in the schedule or to disturbances. We use two different agent based models recently developed to simulate the delays propagation and assess the effect of disruptions in the networks (US and ECAC areas). Our results show that a first-come first-served protocol managing the flights produces larger congestion when compared with an ATFM (Air Traffic Flow Management) slots priority system.

Suggested Citation

  • Campanelli, Bruno & Fleurquin, Pablo & Arranz, Andrés & Etxebarria, Izaro & Ciruelos, Carla & Eguíluz, Víctor M. & Ramasco, José J., 2016. "Comparing the modeling of delay propagation in the US and European air traffic networks," Journal of Air Transport Management, Elsevier, vol. 56(PA), pages 12-18.
  • Handle: RePEc:eee:jaitra:v:56:y:2016:i:pa:p:12-18
    DOI: 10.1016/j.jairtraman.2016.03.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0969699716301016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jairtraman.2016.03.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynolds-Feighan, Aisling, 2010. "Characterisation of airline networks: A North American and European comparison," Journal of Air Transport Management, Elsevier, vol. 16(3), pages 109-120.
    2. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    3. AhmadBeygi, Shervin & Cohn, Amy & Guan, Yihan & Belobaba, Peter, 2008. "Analysis of the potential for delay propagation in passenger airline networks," Journal of Air Transport Management, Elsevier, vol. 14(5), pages 221-236.
    4. Burghouwt, Guillaume & de Wit, Jaap, 2005. "Temporal configurations of European airline networks," Journal of Air Transport Management, Elsevier, vol. 11(3), pages 185-198.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyi Qu & Shixing Wu & Jinjie Zhang, 2023. "Flight Delay Propagation Prediction Based on Deep Learning," Mathematics, MDPI, vol. 11(3), pages 1-24, January.
    2. Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut, 2021. "Airline ground operations: Optimal schedule recovery with uncertain arrival times," Journal of Air Transport Management, Elsevier, vol. 92(C).
    3. Kafle, Nabin & Zou, Bo, 2016. "Modeling flight delay propagation: A new analytical-econometric approach," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 520-542.
    4. Li, Qiang & Jing, Ranzhe, 2021. "Characterization of delay propagation in the air traffic network," Journal of Air Transport Management, Elsevier, vol. 94(C).
    5. Guo, Zhen & Hao, Mengyan & Yu, Bin & Yao, Baozhen, 2022. "Detecting delay propagation in regional air transport systems using convergent cross mapping and complex network theory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    6. Chen, Shenwen & Du, Wenbo & Liu, Runran & Cao, Xianbin, 2023. "Finding spatial and temporal features of delay propagation via multi-layer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).
    7. Ng, K.K.H. & Lee, C.K.M. & Chan, Felix T.S. & Qin, Yichen, 2017. "Robust aircraft sequencing and scheduling problem with arrival/departure delay using the min-max regret approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 115-136.
    8. Gurtner, Gérald & Cook, Andrew, 2021. "The hidden cost of uncertainty for airspace users," Journal of Air Transport Management, Elsevier, vol. 91(C).
    9. Bombelli, Alessandro & Sallan, Jose Maria, 2023. "Analysis of the effect of extreme weather on the US domestic air network. A delay and cancellation propagation network approach," Journal of Transport Geography, Elsevier, vol. 107(C).
    10. Rodríguez-Sanz, à lvaro & Comendador, Fernando Gómez & Valdés, Rosa Arnaldo & Pérez-Castán, Javier A., 2018. "Characterization and prediction of the airport operational saturation," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 147-172.
    11. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    12. Achenbach, Anna & Spinler, Stefan, 2018. "Prescriptive analytics in airline operations: Arrival time prediction and cost index optimization for short-haul flights," Operations Research Perspectives, Elsevier, vol. 5(C), pages 265-279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    2. Wu, Cheng-Lung & Truong, Tiffany, 2014. "Improving the IATA delay data coding system for enhanced data analytics," Journal of Air Transport Management, Elsevier, vol. 40(C), pages 78-85.
    3. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    4. Kenan, Nabil & Diabat, Ali & Jebali, Aida, 2018. "Codeshare agreements in the integrated aircraft routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 272-295.
    5. Uğur Arıkan & Sinan Gürel & M. Selim Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    6. Uğur Arıkan & Sinan Gürel & M. Aktürk, 2016. "Integrated aircraft and passenger recovery with cruise time controllability," Annals of Operations Research, Springer, vol. 236(2), pages 295-317, January.
    7. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    8. Kenan, Nabil & Jebali, Aida & Diabat, Ali, 2018. "The integrated aircraft routing problem with optional flights and delay considerations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 355-375.
    9. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    10. João P. Pita & Cynthia Barnhart & António P. Antunes, 2013. "Integrated Flight Scheduling and Fleet Assignment Under Airport Congestion," Transportation Science, INFORMS, vol. 47(4), pages 477-492, November.
    11. Reynolds-Feighan, Aisling & McLay, Peter, 2006. "Accessibility and attractiveness of European airports: A simple small community perspective," Journal of Air Transport Management, Elsevier, vol. 12(6), pages 313-323.
    12. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    13. Dixit, Aasheesh & Jakhar, Suresh Kumar, 2021. "Airport capacity management: A review and bibliometric analysis," Journal of Air Transport Management, Elsevier, vol. 91(C).
    14. Redondi, Renato & Birolini, Sebastian & Morlotti, Chiara & Paleari, Stefano, 2021. "Connectivity measures and passengers’ behavior: Comparing conventional connectivity models to predict itinerary market shares," Journal of Air Transport Management, Elsevier, vol. 90(C).
    15. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    16. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    17. Ivanov, Nikola & Netjasov, Fedja & Jovanović, Radosav & Starita, Stefano & Strauss, Arne, 2017. "Air Traffic Flow Management slot allocation to minimize propagated delay and improve airport slot adherence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 183-197.
    18. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).
    19. Sismanidou, Athina & Tarradellas, Joan & Bel, Germà & Fageda, Xavier, 2013. "Estimating potential long-haul air passenger traffic in national networks containing two or more dominant cities," Journal of Transport Geography, Elsevier, vol. 26(C), pages 108-116.
    20. Chang, Yu-Chun & Lee, Wei-Hao & Hsu, Chia-Jui, 2020. "Identifying competitive position for ten Asian aviation hubs," Transport Policy, Elsevier, vol. 87(C), pages 51-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jaitra:v:56:y:2016:i:pa:p:12-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-air-transport-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.