IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v96y2021icp276-291.html
   My bibliography  Save this article

Model-independent price bounds for Catastrophic Mortality Bonds

Author

Listed:
  • Bahl, Raj Kumari
  • Sabanis, Sotirios

Abstract

In this paper, we are concerned with the valuation of Catastrophic Mortality Bonds and, in particular, we examine the case of the Swiss Re Mortality Bond 2003 as a primary example of this class of assets. This bond was the first Catastrophic Mortality Bond to be launched in the market and encapsulates the behaviour of a well-defined mortality index to generate payoffs for bondholders. Pricing these type of bonds is a challenging task and no closed form solution exists in the literature. In our approach, we express the payoff of such a bond in terms of the payoff of an Asian put option and present a new approach to derive model-independent bounds exploiting comonotonic theory as illustrated in Albrecher (2008), Dhaene (2002) and Simon (2000) for the pricing of Asian options. We carry out Monte Carlo simulations to estimate the bond price and illustrate the quality of the bounds.

Suggested Citation

  • Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
  • Handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:276-291
    DOI: 10.1016/j.insmatheco.2020.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720301633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    2. Dhaene, Jan & Kukush, Alexander & Luciano, Elisa & Schoutens, Wim & Stassen, Ben, 2013. "On the (in-)dependence between financial and actuarial risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 522-531.
    3. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    4. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751, September.
    5. Kaas, Rob & Dhaene, Jan & Goovaerts, Marc J., 2000. "Upper and lower bounds for sums of random variables," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 151-168, October.
    6. Blake David & Cairns Andrew & Dowd Kevin, 2008. "The Birth of the Life Market," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(1), pages 1-32, September.
    7. Dahl, Mikkel & Moller, Thomas, 2006. "Valuation and hedging of life insurance liabilities with systematic mortality risk," Insurance: Mathematics and Economics, Elsevier, vol. 39(2), pages 193-217, October.
    8. Morton Lane, 2011. "Longevity Risk from the Perspective of the ILS Markets*," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 501-515, October.
    9. Blake, D. & Cairns, A. J. G. & Dowd, K., 2006. "Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities," British Actuarial Journal, Cambridge University Press, vol. 12(1), pages 153-197, March.
    10. Shang, Zhaoning & Goovaerts, Marc & Dhaene, Jan, 2011. "A recursive approach to mortality-linked derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 240-248, September.
    11. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    12. Young, Virginia R., 2008. "Pricing life insurance under stochastic mortality via the instantaneous Sharpe ratio," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 691-703, April.
    13. Samuel Cox & Yijia Lin, 2007. "Natural Hedging of Life and Annuity Mortality Risks," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(3), pages 1-15.
    14. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2015. "Economic Pricing of Mortality-Linked Securities: A Tâtonnement Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 82(1), pages 65-96, March.
    15. Labuschagne, Coenraad C.A. & Offwood, Theresa M., 2010. "A note on the connection between the Esscher-Girsanov transform and the Wang transform," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 385-390, December.
    16. Simon, S. & Goovaerts, M. J. & Dhaene, J., 2000. "An easy computable upper bound for the price of an arithmetic Asian option," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 175-183, May.
    17. Erhan Bayraktar & Virginia Young, 2008. "Pricing options in incomplete equity markets via the instantaneous Sharpe ratio," Annals of Finance, Springer, vol. 4(4), pages 399-429, October.
    18. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252, June.
    19. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736, December.
    20. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A., 2011. "Worst case risk measurement: Back to the future?," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 380-392.
    21. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    22. Goovaerts, Marc J. & Laeven, Roger J.A., 2008. "Actuarial risk measures for financial derivative pricing," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 540-547, April.
    23. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    24. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    25. H. Albrecher & P. A. Mayer & W. Schoutens, 2008. "General Lower Bounds for Arithmetic Asian Option Prices," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(2), pages 123-149.
    26. Michel Denuit & Pierre Devolder & Anne‐Cécile Goderniaux, 2007. "Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in the Lee‐Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(1), pages 87-113, March.
    27. Weir, David R., 1989. "Tontines, Public Finance, and Revolution in France and England, 1688–1789," The Journal of Economic History, Cambridge University Press, vol. 49(1), pages 95-124, March.
    28. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    29. Yinglu Deng & Patrick L. Brockett & Richard D. MacMinn, 2012. "Longevity/Mortality Risk Modeling and Securities Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(3), pages 697-721, September.
    30. Bayraktar, Erhan & Milevsky, Moshe A. & David Promislow, S. & Young, Virginia R., 2009. "Valuation of mortality risk via the instantaneous Sharpe ratio: Applications to life annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 676-691, March.
    31. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    32. Lin, Yijia & Cox, Samuel H., 2008. "Securitization of catastrophe mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 628-637, April.
    33. David Blake & Richard MacMinn & Raimond Maurer, 2013. "Longevity Risk and Capital Markets: The 2011–2012 Update," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 495-500, September.
    34. Wang, Shaun S., 2002. "A Universal Framework for Pricing Financial and Insurance Risks," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 213-234, November.
    35. Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
    36. Laeven, Roger J.A., 2009. "Worst VaR scenarios: A remark," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 159-163, April.
    37. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    38. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    39. Nairn McWilliams & Sotirios Sabanis, 2011. "Arithmetic Asian Options under Stochastic Delay Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 18(5), pages 423-446, February.
    40. Pelsser, Antoon, 2008. "On the Applicability of the Wang Transform for Pricing Financial Risks," ASTIN Bulletin, Cambridge University Press, vol. 38(1), pages 171-181, May.
    41. Luiz Vitiello & Ser‐Huang Poon, 2010. "General equilibrium and preference free model for pricing options under transformed gamma distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(5), pages 409-431, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Wulan Anggraeni & Sudradjat Supian & Sukono & Nurfadhlina Binti Abdul Halim, 2022. "Earthquake Catastrophe Bond Pricing Using Extreme Value Theory: A Mini-Review Approach," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    3. Hanbali, Hamza & Dhaene, Jan & Linders, Daniël, 2022. "Dependence bounds for the difference of stop-loss payoffs on the difference of two random variables," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 22-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raj Kumari Bahl & Sotirios Sabanis, 2016. "Model-Independent Price Bounds for Catastrophic Mortality Bonds," Papers 1607.07108, arXiv.org, revised Dec 2020.
    2. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    5. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    6. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    7. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.
    8. Bauer, Daniel & Börger, Matthias & Ruß, Jochen, 2010. "On the pricing of longevity-linked securities," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 139-149, February.
    9. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    10. Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
    11. Min Zheng, 2015. "Heterogeneous Expectations and Speculative Behavior in Insurance-Linked Securities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-12, March.
    12. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    13. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    14. Wang, Ting & Young, Virginia R., 2016. "Hedging pure endowments with mortality derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 238-255.
    15. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    16. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    17. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    18. Ting Wang & Virginia R. Young, 2010. "Hedging Pure Endowments with Mortality Derivatives," Papers 1011.0248, arXiv.org.
    19. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    20. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.

    More about this item

    Keywords

    Mortality Risk; Catastrophic Mortality Bonds; Model-independent bounds; Asian options; Comonotonicity;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:276-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.