IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v64y2015icp135-150.html
   My bibliography  Save this article

The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds

Author

Listed:
  • Liu, Yanxin
  • Li, Johnny Siu-Hang

Abstract

To value catastrophic mortality bonds, a number of stochastic mortality models with transitory jump effects have been proposed. Rather than modeling the age pattern of jump effects explicitly, most of the existing models assume that the distributions of jump effects and general mortality improvements across ages are identical. Nevertheless, this assumption does not seem to be in line with what we observe from historical data. In this paper, we address this problem by introducing a Lee–Carter variant that captures the age pattern of mortality jumps by a distinct collection of parameters. The model variant is then further generalized to permit the age pattern of jump effects to vary randomly. We illustrate the two proposed models with mortality data from the United States and English and Welsh populations, and use them to value hypothetical mortality bonds with similar specifications to the Atlas IX Capital Class B note that was launched in 2013. It is found that the features we consider have a significant impact on the estimated prices.

Suggested Citation

  • Liu, Yanxin & Li, Johnny Siu-Hang, 2015. "The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 135-150.
  • Handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:135-150
    DOI: 10.1016/j.insmatheco.2015.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.05.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hua & Cummins, J. David, 2010. "Longevity bond premiums: The extreme value approach and risk cubic pricing," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 150-161, February.
    2. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2011. "Economic Pricing of Mortality-linked Securities in the Presence of Population Basis Risk," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 544-566, October.
    3. Hainaut, Donatien & Devolder, Pierre, 2008. "Mortality modelling with Lévy processes," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 409-418, February.
    4. Hua Chen & Samuel H. Cox, 2009. "Modeling Mortality With Jumps: Applications to Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 727-751, September.
    5. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    6. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    7. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    8. Haberman, Steven & Renshaw, Arthur, 2012. "Parametric mortality improvement rate modelling and projecting," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 309-333.
    9. Blake, D. & Cairns, A. J. G. & Dowd, K., 2006. "Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities," British Actuarial Journal, Cambridge University Press, vol. 12(1), pages 153-197, March.
    10. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    11. Murphy, Kevin M & Topel, Robert H, 2002. "Estimation and Inference in Two-Step Econometric Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 88-97, January.
    12. Yijia Lin & Sheen Liu & Jifeng Yu, 2013. "Pricing Mortality Securities With Correlated Mortality Indexes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 921-948, December.
    13. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    14. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    15. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    16. Samuel H. Cox & Yijia Lin & Shaun Wang, 2006. "Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 719-736, December.
    17. Ronald Lee & Timothy Miller, 2001. "Evaluating the performance of the lee-carter method for forecasting mortality," Demography, Springer;Population Association of America (PAA), vol. 38(4), pages 537-549, November.
    18. Hua Chen & Michael Sherris & Tao Sun & Wenge Zhu, 2013. "Living With Ambiguity: Pricing Mortality-Linked Securities With Smooth Ambiguity Preferences," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 705-732, September.
    19. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    20. Chen, Hua & Cox, Samuel H. & Wang, Shaun S., 2010. "Is the Home Equity Conversion Mortgage in the United States sustainable? Evidence from pricing mortgage insurance premiums and non-recourse provisions using the conditional Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 371-384, April.
    21. Yinglu Deng & Patrick L. Brockett & Richard D. MacMinn, 2012. "Longevity/Mortality Risk Modeling and Securities Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(3), pages 697-721, September.
    22. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    23. Lin, Yijia & Cox, Samuel H., 2008. "Securitization of catastrophe mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 628-637, April.
    24. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    25. Andrew J.G. Cairns & Kevin Dowd & David Blake & Guy D. Coughlan, 2014. "Longevity hedge effectiveness: a decomposition," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 217-235, February.
    26. Li, Johnny Siu-Hang & Hardy, Mary R. & Tan, Ken Seng, 2009. "Uncertainty in Mortality Forecasting: An Extension to the Classical Lee-Carter Approach," ASTIN Bulletin, Cambridge University Press, vol. 39(1), pages 137-164, May.
    27. Cox, Samuel H. & Lin, Yijia & Pedersen, Hal, 2010. "Mortality risk modeling: Applications to insurance securitization," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 242-253, February.
    28. Shuo-Li Chuang & Patrick Brockett, 2014. "Modeling and Pricing Longevity Derivatives Using Stochastic Mortality Rates and the Esscher Transform," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 22-37.
    29. Wills, Samuel & Sherris, Michael, 2010. "Securitization, structuring and pricing of longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 173-185, February.
    30. Johnny Siu‐Hang Li & Andrew Cheuk‐Yin Ng, 2011. "Canonical Valuation of Mortality‐Linked Securities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 853-884, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Fratoni & Susanna Levantesi & Massimiliano Menzietti, 2022. "Measuring Financial Sustainability and Social Adequacy of the Italian NDC Pension System under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(23), pages 1-23, December.
    2. Raj Kumari Bahl & Sotirios Sabanis, 2016. "Model-Independent Price Bounds for Catastrophic Mortality Bonds," Papers 1607.07108, arXiv.org, revised Dec 2020.
    3. Maria Francesca Carfora & Albina Orlando, 2023. "A Preliminary Investigation of a Single Shock Impact on Italian Mortality Rates Using STMF Data: A Case Study of COVID-19," Data, MDPI, vol. 8(6), pages 1-12, June.
    4. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    5. Wang, Zihe & Li, Johnny Siu-Hang, 2016. "A DCC-GARCH multi-population mortality model and its applications to pricing catastrophic mortality bonds," Finance Research Letters, Elsevier, vol. 16(C), pages 103-111.
    6. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    7. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    4. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    5. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    6. Bahl, Raj Kumari & Sabanis, Sotirios, 2021. "Model-independent price bounds for Catastrophic Mortality Bonds," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 276-291.
    7. Huang, Yu-Lieh & Tsai, Jeffrey Tzuhao & Yang, Sharon S. & Cheng, Hung-Wen, 2014. "Price bounds of mortality-linked security in incomplete insurance market," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 30-39.
    8. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    9. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    10. Leung, Melvern & Fung, Man Chung & O’Hare, Colin, 2018. "A comparative study of pricing approaches for longevity instruments," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 95-116.
    11. Raj Kumari Bahl & Sotirios Sabanis, 2016. "Model-Independent Price Bounds for Catastrophic Mortality Bonds," Papers 1607.07108, arXiv.org, revised Dec 2020.
    12. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    13. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    14. Kung, Ko-Lun & Liu, I-Chien & Wang, Chou-Wen, 2021. "Modeling and pricing longevity derivatives using Skellam distribution," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 341-354.
    15. Zhou, Rui & Li, Johnny Siu-Hang & Tan, Ken Seng, 2015. "Modeling longevity risk transfers as Nash bargaining problems: Methodology and insights," Economic Modelling, Elsevier, vol. 51(C), pages 460-472.
    16. Chen, Fen-Ying & Yang, Sharon S. & Huang, Hong-Chih, 2022. "Modeling pandemic mortality risk and its application to mortality-linked security pricing," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 341-363.
    17. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    18. Wang, Zihe & Li, Johnny Siu-Hang, 2016. "A DCC-GARCH multi-population mortality model and its applications to pricing catastrophic mortality bonds," Finance Research Letters, Elsevier, vol. 16(C), pages 103-111.
    19. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    20. Min Zheng, 2015. "Heterogeneous Expectations and Speculative Behavior in Insurance-Linked Securities," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:64:y:2015:i:c:p:135-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.