Advanced Search
MyIDEAS: Login

A Bayesian approach to pricing longevity risk based on risk-neutral predictive distributions

Contents:

Author Info

  • Kogure, Atsuyuki
  • Kurachi, Yoshiyuki

Abstract

We present a Bayesian approach to pricing longevity risk under the framework of the Lee-Carter methodology. Specifically, we propose a Bayesian method for pricing the survivor bond and the related survivor swap designed by Denuit et al. (2007). Our method is based on the risk neutralization of the predictive distribution of future survival rates using the entropy maximization principle discussed by Stutzer (1996). The method is illustrated by applying it to Japanese mortality rates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V8N-4XH5MDM-1/2/8e8c5a644184ad791a4f8a8c2a87a9c1
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

Volume (Year): 46 (2010)
Issue (Month): 1 (February)
Pages: 162-172

as in new window
Handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:162-172

Contact details of provider:
Web page: http://www.elsevier.com/locate/inca/505554

Related research

Keywords: Bayesian approach Pricing longevity risk Maximum entropy principle Risk-neutral predictive distribution Japanese mortality rates;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
  2. Isabelle Bray, 2002. "Application of Markov chain Monte Carlo methods to projecting cancer incidence and mortality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(2), pages 151-164.
  3. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
  4. Czado, Claudia & Delwarde, Antoine & Denuit, Michel, 2005. "Bayesian Poisson log-bilinear mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 260-284, June.
  5. Kogure Atsuyuki & Kitsukawa Kenji & Kurachi Yoshiyuki, 2009. "A Bayesian Comparison of Models for Changing Mortalities toward Evaluating Longevity Risk in Japan," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 3(2), pages 1-22, April.
  6. Alex Cowley & J. David Cummins, 2005. "Securitization of Life Insurance Assets and Liabilities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 193-226.
  7. F. Douglas Foster & Charles H. Whiteman, 2006. "Bayesian Prediction, Entropy, and Option Pricingx," Australian Journal of Management, Australian School of Business, vol. 31(2), pages 181-205, December.
  8. Wolfgang Reichmuth & Samad Sarferaz, 2008. "Bayesian Demographic Modeling and Forecasting: An Application to U.S. Mortality," SFB 649 Discussion Papers SFB649DP2008-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  9. Kevin Dowd & David Blake & Andrew J. G. Cairns & Paul Dawson, 2006. "Survivor Swaps," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(1), pages 1-17.
  10. Yijia Lin & Samuel H. Cox, 2005. "Securitization of Mortality Risks in Life Annuities," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 72(2), pages 227-252.
  11. Blake, David & Dowd, Kevin & Cairns, Andrew J.G., 2008. "Longevity risk and the Grim Reaper's toxic tail: The survivor fan charts," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1062-1066, June.
  12. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
  13. Michel Denuit & Pierre Devolder & Anne-Cécile Goderniaux, 2007. "Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in the Lee-Carter Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 74(1), pages 87-113.
  14. Stutzer, Michael, 1996. " A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-52, December.
  15. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
  16. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two-Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
  2. David Blake & Christophe Courbage & Richard MacMinn & Michael Sherris, 2011. "Longevity Risk and Capital Markets: The 2010–2011 Update," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan, vol. 36(4), pages 489-500, October.
  3. Cairns, Andrew & Dowd, Kevin & Blake, David & Coughlan, Guy, 2011. "Longevity hedge effectiveness: a decomposition," MPRA Paper 34236, University Library of Munich, Germany.
  4. Hua Chen & Michael Sherris & Tao Sun & Wenge Zhu, 2013. "Living With Ambiguity: Pricing Mortality-Linked Securities With Smooth Ambiguity Preferences," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 705-732, 09.
  5. Blake, David & Brockett, Patrick & Cox, Samuel & MacMinn, Richard, 2011. "Longevity risk and capital markets: The 2009-2010 update," MPRA Paper 28868, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:162-172. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.