IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v51y2015icp38-46.html
   My bibliography  Save this article

A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand

Author

Listed:
  • Halbritter, Andreas
  • Deegen, Peter

Abstract

A planting and timber harvest scheduling model for even-aged forest stands was developed by combining and extending the dynamic thinning approach and existing work on planting density. A net present value maximum solution for planted volume, thinning regime and rotation schedule was determined simultaneously. The influence of the planting density on the optimal stand volume path, thinning schedule and rotation length was analyzed, emphasizing the importance of optimal stand establishment. The results and dependencies are discussed in detail and compared to findings presented in the literature.

Suggested Citation

  • Halbritter, Andreas & Deegen, Peter, 2015. "A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand," Forest Policy and Economics, Elsevier, vol. 51(C), pages 38-46.
  • Handle: RePEc:eee:forpol:v:51:y:2015:i:c:p:38-46
    DOI: 10.1016/j.forpol.2014.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934114001956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2014.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    2. Halbritter, Andreas & Deegen, Peter, 2011. "Economic analysis of exploitation and regeneration in plantations with problematic site productivity," Journal of Forest Economics, Elsevier, vol. 17(3), pages 319-334, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koster, Roman & Fuchs, Jasper M., 2022. "Opportunity costs of growing space – an essential driver of economical single-tree harvest decisions," Forest Policy and Economics, Elsevier, vol. 135(C).
    2. Li, Zhaochen & Xiao, Jun & Lu, Gang & Sun, Weina & Ma, Chenggong & Jin, Yudong, 2020. "Productivity and profitability of Larix principis-rupprechtii and Pinus tabuliformis plantation forests in Northeast China," Forest Policy and Economics, Elsevier, vol. 121(C).
    3. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).
    4. Tahvonen, Olli, 2016. "Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry," Forest Policy and Economics, Elsevier, vol. 62(C), pages 88-94.
    5. Chen, Si & Shahi, Chander & Chen, Han Y.H. & McLaren, Brian, 2017. "Economic analysis of forest management alternatives: Compositional objectives, rotation ages, and harvest methods in boreal forests," Forest Policy and Economics, Elsevier, vol. 85(P1), pages 124-134.
    6. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    7. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    8. Halbritter, Andreas, 2020. "An economic analysis of thinning intensity and thinning type of a two-tiered even-aged Forest stand," Forest Policy and Economics, Elsevier, vol. 111(C).
    9. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    10. Müller, Fabian & Hanewinkel, Marc, 2018. "Challenging the assumptions of a standard model: How historical triggers in terms of technical innovations, labor costs and timber price change the land expectation value," Forest Policy and Economics, Elsevier, vol. 95(C), pages 46-56.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    2. Deegen, Peter & Halbritter, Andreas, 2018. "The pure market allocation of land between forestry and agriculture," Forest Policy and Economics, Elsevier, vol. 97(C), pages 122-131.
    3. Coordes, Renke, 2016. "The emergence of forest age structures as determined by uneven-aged stands and age class forests," Journal of Forest Economics, Elsevier, vol. 25(C), pages 160-179.
    4. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    5. An, Hyunjin, 2017. "Forest Carbon Sequestration And Optimal Harvesting Decision Considering Southern Pine Beetle (Spb) Disturbance: A Real Option Approach," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 40(Special, ), December.
    6. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    7. Susaeta, Andres & Carter, Douglas R. & Adams, Damian C., 2014. "Impacts of Climate Change on Economics of Forestry and Adaptation Strategies in the Southern United States," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 46(2), pages 1-16, May.
    8. Khanal, Puskar N. & Grebner, Donald L. & Munn, Ian A. & Grado, Stephen C. & Grala, Robert K. & Henderson, James E., 2017. "Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States," Forest Policy and Economics, Elsevier, vol. 75(C), pages 112-119.
    9. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    10. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    11. Rørstad, Per Kristian, 2022. "Payment for CO2 sequestration affects the Faustmann rotation period in Norway more than albedo payment does," Ecological Economics, Elsevier, vol. 199(C).
    12. Hale, Todd & Kahui, Viktoria & Farhat, Daniel, 2015. "A modified production possibility frontier for efficient forestry management under the New Zealand Emissions Trading Scheme," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
    13. Sullivan, Jay & Amacher, Gregory S., 2013. "Optimal hardwood tree planting and forest reclamation policy on reclaimed surface mine lands in the Appalachian coal region," Resources Policy, Elsevier, vol. 38(1), pages 1-7.
    14. Hultkrantz, Lars & Mantalos, Panagiotis, 2018. "Hedging with trees: Tail-hedge discounting of long-term forestry returns," Journal of Forest Economics, Elsevier, vol. 30(C), pages 52-57.
    15. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    16. Yuanjie Deng & Wencong Cai & Mengyang Hou & Xiaolong Zhang & Shiyuan Xu & Nan Yao & Yajun Guo & Hua Li & Shunbo Yao, 2022. "How Eco-Efficiency Is the Forestry Ecological Restoration Program? The Case of the Sloping Land Conversion Program in the Loess Plateau, China," Land, MDPI, vol. 11(5), pages 1-20, May.
    17. Olli Tahvonen, 2015. "Economics of Naturally Regenerating, Heterogeneous Forests," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(2), pages 309-337.
    18. Barua, Sepul K. & Lintunen, Jussi & Uusivuori, Jussi & Kuuluvainen, Jari, 2014. "On the economics of tropical deforestation: Carbon credit markets and national policies," Forest Policy and Economics, Elsevier, vol. 47(C), pages 36-45.
    19. Miettinen, Jenni & Ollikainen, Markku & Nieminen, Tiina M. & Ukonmaanaho, Liisa & Laurén, Ari & Hynynen, Jari & Lehtonen, Mika & Valsta, Lauri, 2014. "Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change mitigation matter," Forest Policy and Economics, Elsevier, vol. 47(C), pages 25-35.
    20. Wadjamsse Djezou, 2016. "Land Tenure Security and Deforestation: A case Study of Forest land conversion to Perennial crops in Côte d'Ivoire," Economics Bulletin, AccessEcon, vol. 36(1), pages 173-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:51:y:2015:i:c:p:38-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.