IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v135y2022ics1389934121002744.html
   My bibliography  Save this article

Opportunity costs of growing space – an essential driver of economical single-tree harvest decisions

Author

Listed:
  • Koster, Roman
  • Fuchs, Jasper M.

Abstract

Controlling the growing space available to trees is essential for silvicultural management. For an efficient, i.e. economical, allocation of the scarce growing space, a qualitative and quantitative knowledge of all drivers of harvest decisions is required. The fundamental Faustmann-Pressler-Ohlin-Theorem reveals these drivers at the stand level: In the economical optimum, the stand's future value increment is equal to the interest of its value plus the land rent of the following stand. However, with increasing availability of single-tree data and single-tree-oriented management of heterogeneous stands, the need to transfer these fundamental economic relationships to the single-tree level arises. While several studies already focus on this problem, approaches using practice-related growth and harvest simulations that omit assumptions on the optimal thinning type are still somewhat rare. Our study seeks to provide a deeper understanding of basic economic principles underlying single-tree harvests. We thus aim to contribute to the methodological improvement of decision support systems regarding the implementation of silvicultural-economic linkages. We present a simulation-optimization model to analyze the importance of opportunity costs of growing space for economical harvests of even-aged single-trees under varying production goals and individual tree characteristics. Here, we show that controlling the competition-based growing space efficiency should guide harvest decisions at a young age, whereas with age the focus should shift to possible investment alternatives for the financial resources fixed in a tree. Our analyses of economical harvest decisions indicate that the importance of individual tree characteristics rises with increasing heterogeneity. We found some surprising economically optimal harvest sequences in heterogeneous groups of trees, which underlines the high potential of our model to inform practical decision making at the single-tree level. By implementing economic theory in marteloscopes, our approach could enable an improved training of forest managers to face complex silvicultural decisions. In an environment shaped by scarcities, the derived principles can be applied to various ecosystem services.

Suggested Citation

  • Koster, Roman & Fuchs, Jasper M., 2022. "Opportunity costs of growing space – an essential driver of economical single-tree harvest decisions," Forest Policy and Economics, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:forpol:v:135:y:2022:i:c:s1389934121002744
    DOI: 10.1016/j.forpol.2021.102668
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934121002744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2021.102668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Halbritter, Andreas & Deegen, Peter, 2015. "A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand," Forest Policy and Economics, Elsevier, vol. 51(C), pages 38-46.
    2. Chang, Sun Joseph & Deegen, Peter, 2011. "Pressler's indicator rate formula as a guide for forest management," Journal of Forest Economics, Elsevier, vol. 17(3), pages 258-266, August.
    3. Staupendahl, Kai & Möhring, Bernhard, 2011. "Integrating natural risks into silvicultural decision models: A survival function approach," Forest Policy and Economics, Elsevier, vol. 13(6), pages 496-502, July.
    4. Hahn, W. Andreas & Härtl, Fabian & Irland, Lloyd C. & Kohler, Christoph & Moshammer, Ralf & Knoke, Thomas, 2014. "Financially optimized management planning under risk aversion results in even-flow sustained timber yield," Forest Policy and Economics, Elsevier, vol. 42(C), pages 30-41.
    5. Janne Rämö & Olli Tahvonen, 2017. "Optimizing the Harvest Timing in Continuous Cover Forestry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 853-868, August.
    6. Jette Bredahl Jacobsen & Frank Jensen & Bo Jellesmark Thorsen, 2018. "Forest Value and Optimal Rotations in Continuous Cover Forestry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 713-732, April.
    7. Halbritter, Andreas & Deegen, Peter & Susaeta, Andres, 2020. "An economic analysis of thinnings and rotation lengths in the presence of natural risks in even-aged forest stands," Forest Policy and Economics, Elsevier, vol. 118(C).
    8. Olli Tahvonen, 2004. "Optimal Harvesting Of Forest Age Classes: A Survey Of Some Recent Results," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 205-232.
    9. Clasen, Christian & Griess, Verena C. & Knoke, Thomas, 2011. "Financial consequences of losing admixed tree species: A new approach to value increased financial risks by ungulate browsing," Forest Policy and Economics, Elsevier, vol. 13(6), pages 503-511, July.
    10. Samuelson, Paul A, 1976. "Economics of Forestry in an Evolving Society," Economic Inquiry, Western Economic Association International, vol. 14(4), pages 466-492, December.
    11. Härtl, Fabian & Hahn, Andreas & Knoke, Thomas, 2010. "Integrating neighbourhood effects in the calculation of optimal final tree diameters," Journal of Forest Economics, Elsevier, vol. 16(3), pages 179-193, August.
    12. Gong, Peichen & Löfgren, Karl-Gustaf, 2010. "Did Pressler fully understand how to use the indicator per cent?," Journal of Forest Economics, Elsevier, vol. 16(3), pages 195-203, August.
    13. Knoke, Thomas & Paul, Carola & Härtl, Fabian, 2017. "A critical view on benefit-cost analyses of silvicultural management options with declining discount rates," Forest Policy and Economics, Elsevier, vol. 83(C), pages 58-69.
    14. Viitala, Esa-Jussi, 2016. "Faustmann formula before Faustmann in German territorial states," Forest Policy and Economics, Elsevier, vol. 65(C), pages 47-58.
    15. Tahvonen, Olli & Salo, Seppo & Kuuluvainen, Jari, 2001. "Optimal forest rotation and land values under a borrowing constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1595-1627, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susaeta, Andres, 2018. "On Pressler’s indicator rate formula under the generalized Reed model," Journal of Forest Economics, Elsevier, vol. 30(C), pages 32-37.
    2. Khan, M. Ali, 2016. "On a forest as a commodity and on commodification in the discipline of forestry," Forest Policy and Economics, Elsevier, vol. 72(C), pages 7-17.
    3. McTaggart, Ewan & Megiddo, Itamar & Kleczkowski, Adam, 2023. "The effect of pests and pathogens on forest harvesting regimes: A bioeconomic model," Ecological Economics, Elsevier, vol. 209(C).
    4. Friedrich, Stefan & Paul, Carola & Brandl, Susanne & Biber, Peter & Messerer, Katharina & Knoke, Thomas, 2019. "Economic impact of growth effects in mixed stands of Norway spruce and European beech – A simulation based study," Forest Policy and Economics, Elsevier, vol. 104(C), pages 65-80.
    5. Fabbri, Giorgio & Faggian, Silvia & Freni, Giuseppe, 2015. "On the Mitra–Wan forest management problem in continuous time," Journal of Economic Theory, Elsevier, vol. 157(C), pages 1001-1040.
    6. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    7. Roessiger, Joerg & Griess, Verena C. & Härtl, Fabian & Clasen, Christian & Knoke, Thomas, 2013. "How economic performance of a stand increases due to decreased failure risk associated with the admixing of species," Ecological Modelling, Elsevier, vol. 255(C), pages 58-69.
    8. Wildberg, Johannes & Möhring, Bernhard, 2021. "Continuous timber harvest — Costly restriction or profitable solution?," Forest Policy and Economics, Elsevier, vol. 123(C).
    9. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    10. Petri P Kärenlampi, 2019. "Wealth accumulation in rotation forestry – Failure of the net present value optimization?," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-19, October.
    11. Deegen, Peter & Matolepszy, Kai, 2015. "Economic balancing of forest management under storm risk, the case of the Ore Mountains (Germany)," Journal of Forest Economics, Elsevier, vol. 21(1), pages 1-13.
    12. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    13. Knoke, Thomas & Kindu, Mengistie & Jarisch, Isabelle & Gosling, Elizabeth & Friedrich, Stefan & Bödeker, Kai & Paul, Carola, 2020. "How considering multiple criteria, uncertainty scenarios and biological interactions may influence the optimal silvicultural strategy for a mixed forest," Forest Policy and Economics, Elsevier, vol. 118(C).
    14. Viitala, Esa-Jussi, 2016. "Faustmann formula before Faustmann in German territorial states," Forest Policy and Economics, Elsevier, vol. 65(C), pages 47-58.
    15. Knoke, Thomas & Paul, Carola & Härtl, Fabian, 2017. "A critical view on benefit-cost analyses of silvicultural management options with declining discount rates," Forest Policy and Economics, Elsevier, vol. 83(C), pages 58-69.
    16. Jarisch, Isabelle & Bödeker, Kai & Bingham, Logan Robert & Friedrich, Stefan & Kindu, Mengistie & Knoke, Thomas, 2022. "The influence of discounting ecosystem services in robust multi-objective optimization – An application to a forestry-avocado land-use portfolio," Forest Policy and Economics, Elsevier, vol. 141(C).
    17. Chang, Sun Joseph, 2020. "Twenty one years after the publication of the generalized Faustmann formula," Forest Policy and Economics, Elsevier, vol. 118(C).
    18. Deegen Peter, 2013. "Die Stellung der Tharandter Theorien der forstlichen Nachhaltigkeit in Hayeks Klassifikation der Formen menschlicher Ordnung / The relation among the Tharandt-based theories of forest sustainability a," ORDO. Jahrbuch für die Ordnung von Wirtschaft und Gesellschaft, De Gruyter, vol. 64(1), pages 79-98, January.
    19. Petucco, Claudio & Andrés-Domenech, Pablo, 2018. "Land expectation value and optimal rotation age of maritime pine plantations under multiple risks," Journal of Forest Economics, Elsevier, vol. 30(C), pages 58-70.
    20. COUTURE Stephane & REYNAUD Arnaud, 2006. "Multi-stand Forest Management Under a Climatic Risk: Do time and Risk Preferences Matter?," LERNA Working Papers 06.17.210, LERNA, University of Toulouse.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:135:y:2022:i:c:s1389934121002744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.