IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v48y2022ics1544612322001258.html
   My bibliography  Save this article

Jointly forecasting the value-at-risk and expected shortfall of Bitcoin with a regime-switching CAViaR model

Author

Listed:
  • Gao, Lingbo
  • Ye, Wuyi
  • Guo, Ranran

Abstract

We explore the dynamic tail risk in the Bitcoin market by jointly estimating value-at-risk (VaR) and expected shortfall (ES) using the conditional autoregressive value-at-risk (CAViaR) model. To enable more accurate measurement, we construct a Markov regime-switching (MS) model in which the time-varying transition probability is driven by the information contained in asset price bubbles. This is motivated by prior evidence that bubbles are a key indicator of the economic cycle and contain important information on systemic risk. Using daily Bitcoin data from 2013 to 2021, the results provide strong evidence of a form of regime change in Bitcoin’s VaR and ES. Furthermore, the bubble index has a significant impact on tail risk and improves the model’s ability to estimate and predict VaR and ES.

Suggested Citation

  • Gao, Lingbo & Ye, Wuyi & Guo, Ranran, 2022. "Jointly forecasting the value-at-risk and expected shortfall of Bitcoin with a regime-switching CAViaR model," Finance Research Letters, Elsevier, vol. 48(C).
  • Handle: RePEc:eee:finlet:v:48:y:2022:i:c:s1544612322001258
    DOI: 10.1016/j.frl.2022.102826
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612322001258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2022.102826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Balcombe, Kelvin & Fraser, Iain, 2017. "Do bubbles have an explosive signature in markov switching models?," Economic Modelling, Elsevier, vol. 66(C), pages 81-100.
    3. Markus Brunnermeier & Simon Rother & Isabel Schnabel & Itay Goldstein, 2020. "Asset Price Bubbles and Systemic Risk," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4272-4317.
    4. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    5. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    6. Luc Bauwens & Edoardo Otranto, 2016. "Modeling the Dependence of Conditional Correlations on Market Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 254-268, April.
    7. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    8. Meng, Xiaochun & Taylor, James W., 2020. "Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data," European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
    9. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    10. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    11. Riedle, Thorsten, 2018. "Using Market BuVaR as countercyclical Value at Risk approach to account for the risks of stock market crashes," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 308-321.
    12. Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.
    13. Stavros Stavroyiannis, 2018. "Value-at-risk and related measures for the Bitcoin," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(2), pages 127-136, March.
    14. Le, Trung H., 2020. "Forecasting value at risk and expected shortfall with mixed data sampling," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1362-1379.
    15. Damianov, Damian S. & Elsayed, Ahmed H., 2020. "Does Bitcoin add value to global industry portfolios?," Economics Letters, Elsevier, vol. 191(C).
    16. Tobias Fissler & Johanna F. Ziegel & Tilmann Gneiting, 2015. "Expected Shortfall is jointly elicitable with Value at Risk - Implications for backtesting," Papers 1507.00244, arXiv.org, revised Jul 2015.
    17. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    18. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalan, Akanksha & Matkovskyy, Roman, 2023. "Systemic risks in the cryptocurrency market: Evidence from the FTX collapse," Finance Research Letters, Elsevier, vol. 53(C).
    2. Zongwu Cai & Ying Fang & Dingshi Tian, 2024. "CAViaR Model Selection Via Adaptive Lasso," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202403, University of Kansas, Department of Economics, revised Jan 2024.
    3. Pawe{l} Sakowski & Rafa{l} Sieradzki & Robert 'Slepaczuk, 2023. "Systemic risk indicator based on implied and realized volatility," Papers 2307.05719, arXiv.org.
    4. Zaevski, Tsvetelin S. & Nedeltchev, Dragomir C., 2023. "From BASEL III to BASEL IV and beyond: Expected shortfall and expectile risk measures," International Review of Financial Analysis, Elsevier, vol. 87(C).
    5. Paweł Sakowski & Rafał Sieradzki & Robert Ślepaczuk, 2023. "The systemic risk approach based on implied and realized volatility," Working Papers 2023-07, Faculty of Economic Sciences, University of Warsaw.
    6. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    2. Ke, Rui & Yang, Luyao & Tan, Changchun, 2022. "Forecasting tail risk for Bitcoin: A dynamic peak over threshold approach," Finance Research Letters, Elsevier, vol. 49(C).
    3. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    4. Merlo, Luca & Petrella, Lea & Raponi, Valentina, 2021. "Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation," Journal of Banking & Finance, Elsevier, vol. 133(C).
    5. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    6. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    8. Luca Merlo & Lea Petrella & Valentina Raponi, 2021. "Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation," Papers 2106.06518, arXiv.org.
    9. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    10. Xu, Qifa & Chen, Lu & Jiang, Cuixia & Yu, Keming, 2020. "Mixed data sampling expectile regression with applications to measuring financial risk," Economic Modelling, Elsevier, vol. 91(C), pages 469-486.
    11. Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
    12. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
    13. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    14. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    15. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    16. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    17. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    18. Jian, Zhihong & Li, Xupei & Zhu, Zhican, 2022. "Extreme risk transmission channels between the stock index futures and spot markets: Evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    19. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    20. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.

    More about this item

    Keywords

    CAViaR; Bitcoin; Bubble index; Markov regime-switching models;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:48:y:2022:i:c:s1544612322001258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.