IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v40y2021ics1544612320310667.html
   My bibliography  Save this article

Extreme risk spillover between chinese and global crude oil futures

Author

Listed:
  • Yang, Yuying
  • Ma, Yan-Ran
  • Hu, Min
  • Zhang, Dayong
  • Ji, Qiang

Abstract

This paper investigates the risk spillover between China's crude oil futures and international crude oil futures by constructing upside and downside VaR connectedness networks. The findings show that China's crude oil futures behave as a net risk receiver in the global crude oil system, in which Brent and WTI play the leading roles in risk transmission in the system. The dynamic results indicate that the risk spillover between Chinese and international crude oil futures presents obvious time-varying characteristics and has risen sharply since the beginning of 2020, induced by the COVID-19 pandemic.

Suggested Citation

  • Yang, Yuying & Ma, Yan-Ran & Hu, Min & Zhang, Dayong & Ji, Qiang, 2021. "Extreme risk spillover between chinese and global crude oil futures," Finance Research Letters, Elsevier, vol. 40(C).
  • Handle: RePEc:eee:finlet:v:40:y:2021:i:c:s1544612320310667
    DOI: 10.1016/j.frl.2020.101743
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320310667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101743?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Bouri, Elie & Lien, Donald & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Directional predictability of implied volatility: From crude oil to developed and emerging stock markets," Finance Research Letters, Elsevier, vol. 27(C), pages 65-79.
    4. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    5. Wang, Feng & Ye, Xin & Wu, Congxin, 2019. "Multifractal characteristics analysis of crude oil futures prices fluctuation in China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    6. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    7. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    8. Wu, Fei & Zhao, Wan-Li & Ji, Qiang & Zhang, Dayong, 2020. "Dependency, centrality and dynamic networks for international commodity futures prices," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 118-132.
    9. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    10. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    11. Song, Yingjie & Ji, Qiang & Du, Ya-Juan & Geng, Jiang-Bo, 2019. "The dynamic dependence of fossil energy, investor sentiment and renewable energy stock markets," Energy Economics, Elsevier, vol. 84(C).
    12. Ji, Qiang & Zhang, Dayong, 2019. "China’s crude oil futures: Introduction and some stylized facts," Finance Research Letters, Elsevier, vol. 28(C), pages 376-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Jinxin & Maghyereh, Aktham, 2023. "Time-frequency dependence and connectedness among global oil markets: Fresh evidence from higher-order moment perspective," Journal of Commodity Markets, Elsevier, vol. 30(C).
    2. Dejan Živkov & Jasmina Đurašković & Marina Gajić‐Glamočlija, 2022. "Multiscale downside risk interdependence between the major agricultural commodities," Agribusiness, John Wiley & Sons, Ltd., vol. 38(4), pages 990-1011, October.
    3. Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).
    4. Choi, Sun-Yong, 2022. "Dynamic volatility spillovers between industries in the US stock market: Evidence from the COVID-19 pandemic and Black Monday," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    5. Zhang, Jiaming & Guo, Songlin & Dou, Bin & Xie, Bingyuan, 2023. "Evidence of the internationalization of China's crude oil futures: Asymmetric linkages to global financial risks," Energy Economics, Elsevier, vol. 127(PA).
    6. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Li, Jingyu & Liu, Ranran & Yao, Yanzhen & Xie, Qiwei, 2022. "Time-frequency volatility spillovers across the international crude oil market and Chinese major energy futures markets: Evidence from COVID-19," Resources Policy, Elsevier, vol. 77(C).
    8. Ma, Rufei & Liu, Zhenhua & Zhai, Pengxiang, 2022. "Does economic policy uncertainty drive volatility spillovers in electricity markets: Time and frequency evidence," Energy Economics, Elsevier, vol. 107(C).
    9. Ding, Hao & Ji, Qiang & Ma, Rufei & Zhai, Pengxiang, 2022. "High-carbon screening out: A DCC-MIDAS-climate policy risk method," Finance Research Letters, Elsevier, vol. 47(PA).
    10. Abuzayed, Bana & Al-Fayoumi, Nedal, 2021. "Risk spillover from crude oil prices to GCC stock market returns: New evidence during the COVID-19 outbreak," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    11. Yang, Lu & Cui, Xue & Yang, Lei & Hamori, Shigeyuki & Cai, Xiaojing, 2023. "Risk spillover from international financial markets and China's macro-economy: A MIDAS-CoVaR-QR model," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 55-69.
    12. Zheng, Shuxian & Tan, Zhanglu & Xing, Wanli & Zhou, Xuanru & Zhao, Pei & Yin, Xiuqi & Hu, Han, 2022. "A comparative exploration of the chaotic characteristics of Chinese and international copper futures prices," Resources Policy, Elsevier, vol. 78(C).
    13. Wang, Xiaoyu & Wang, Jiaojiao & Wang, Wenhuan & Zhang, Shuquan, 2023. "International and Chinese energy markets: Dynamic spillover effects," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wen, Fenghua & Cao, Jiahui & Liu, Zhen & Wang, Xiong, 2021. "Dynamic volatility spillovers and investment strategies between the Chinese stock market and commodity markets," International Review of Financial Analysis, Elsevier, vol. 76(C).
    2. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
    3. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    4. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    5. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    6. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2021. "Volatility spillovers during market supply shocks: The case of negative oil prices," Resources Policy, Elsevier, vol. 74(C).
    7. Huang, Jionghao & Li, Ziruo & Xia, Xiaohua, 2021. "Network diffusion of international oil volatility risk in China's stock market: Quantile interconnectedness modelling and shock decomposition analysis," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 1-39.
    8. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    9. Shao, Liuguo & Zhang, Hua & Chen, Jinyu & Zhu, Xuehong, 2021. "Effect of oil price uncertainty on clean energy metal stocks in China: Evidence from a nonparametric causality-in-quantiles approach," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 407-419.
    10. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    11. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Wang, Xunxiao & Wu, Chongfeng, 2018. "Asymmetric volatility spillovers between crude oil and international financial markets," Energy Economics, Elsevier, vol. 74(C), pages 592-604.
    13. Shi Chen & Wolfgang Karl Hardle & Brenda L'opez Cabrera, 2020. "Regularization Approach for Network Modeling of German Power Derivative Market," Papers 2009.09739, arXiv.org.
    14. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    15. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    16. Geng, Jiang-Bo & Liu, Changyu & Ji, Qiang & Zhang, Dayong, 2021. "Do oil price changes really matter for clean energy returns?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Wei, Yu & Zhang, Yaojie & Wang, Yudong, 2022. "Information connectedness of international crude oil futures: Evidence from SC, WTI, and Brent," International Review of Financial Analysis, Elsevier, vol. 81(C).
    18. Hernandez, Jose Arreola & Shahzad, Syed Jawad Hussain & Sadorsky, Perry & Uddin, Gazi Salah & Bouri, Elie & Kang, Sang Hoon, 2022. "Regime specific spillovers across US sectors and the role of oil price volatility," Energy Economics, Elsevier, vol. 107(C).
    19. Alexander Pütz & Pierre L. Siklos & Christoph Sulewski, 2019. "“Who pays the piper calls the tune” – Networks and transaction costs in commodity markets," CQE Working Papers 8819, Center for Quantitative Economics (CQE), University of Muenster.
    20. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2021. "An analysis of investor behaviour and information flows surrounding the negative WTI oil price futures event," Energy Economics, Elsevier, vol. 104(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:40:y:2021:i:c:s1544612320310667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.