IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip2p1633-1638.html
   My bibliography  Save this article

Assessment of the safe operation and maintenance of photovoltaic systems

Author

Listed:
  • Kamenopoulos, Sotiris N.
  • Tsoutsos, Theocharis

Abstract

Nowadays although PVs (photovoltaics) have been a major energy source, there are limited publications focused on the risks regarding the operation and maintenance of PV systems. This subject is crucial especially by taking into account the number of additional installations due, also, to the favorable European policy. In addition, there are limited data worldwide regarding mishaps related to the operation/maintenance of installed PV. Thus, it is difficult to establish a safety policy roadmap for PV operations/maintenance projects, especially the large ones. In order to accomplish that, an operational risk management methodology is suggested to be adopted. The scope of this paper is: (i) to clarify the importance of safety at PV systems during normal operation/maintenance; (ii) to establish a baseline holistic risk assessment for installed PV working environment; (iii) to identify probable hazards incorporated to the operation/maintenance of PV systems; and (iv) to assess the associated hazards. The proposed methodology and findings should be considered as a baseline for further research in the future.

Suggested Citation

  • Kamenopoulos, Sotiris N. & Tsoutsos, Theocharis, 2015. "Assessment of the safe operation and maintenance of photovoltaic systems," Energy, Elsevier, vol. 93(P2), pages 1633-1638.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1633-1638
    DOI: 10.1016/j.energy.2015.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421501405X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    2. Burgherr, Peter & Eckle, Petrissa & Hirschberg, Stefan, 2012. "Comparative assessment of severe accident risks in the coal, oil and natural gas chains," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 97-103.
    3. Strupczewski, A., 2003. "Accident risks in nuclear-power plants," Applied Energy, Elsevier, vol. 75(1-2), pages 79-86, May.
    4. Wybo, Jean-Luc, 2013. "Large-scale photovoltaic systems in airports areas: safety concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 402-410.
    5. Ramanathan, R, 2001. "Comparative Risk Assessment of energy supply technologies: a Data Envelopment Analysis approach," Energy, Elsevier, vol. 26(2), pages 197-203.
    6. Burgherr, Peter & Hirschberg, Stefan, 2008. "Severe accident risks in fossil energy chains: A comparative analysis," Energy, Elsevier, vol. 33(4), pages 538-553.
    7. Bezdek, Roger H., 1993. "The environmental, health, and safety implications of solar energy in central station power production," Energy, Elsevier, vol. 18(6), pages 681-685.
    8. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kusakana, Kanzumba, 2017. "Energy management of a grid-connected hydrokinetic system under Time of Use tariff," Renewable Energy, Elsevier, vol. 101(C), pages 1325-1333.
    2. Abhijit Sen & Abdulrahman Khamaj & Majed Moosa & Sougata Karmakar, 2022. "Cross-Cultural Study on OSH Risk Perception of Solar PV Workers of Saudi Arabia and India: Risk Mitigation through PtD," Energies, MDPI, vol. 15(24), pages 1-16, December.
    3. Zhou, Dengji & Yu, Ziqiang & Zhang, Huisheng & Weng, Shilie, 2016. "A novel grey prognostic model based on Markov process and grey incidence analysis for energy conversion equipment degradation," Energy, Elsevier, vol. 109(C), pages 420-429.
    4. Pinto, Mauricio Almeida & Frate, Cláudio Albuquerque & Rodrigues, Thiago Oliveira & Caldeira-Pires, Armando, 2020. "Sensitivity analysis of the carbon payback time for a Brazilian photovoltaic power plant," Utilities Policy, Elsevier, vol. 63(C).
    5. Gao, Jianwei & Guo, Fengjia & Li, Xiangzhen & Huang, Xin & Men, Huijuan, 2021. "Risk assessment of offshore photovoltaic projects under probabilistic linguistic environment," Renewable Energy, Elsevier, vol. 163(C), pages 172-187.
    6. Begum Erten & Zafer Utlu, 2020. "Photovoltaic system configurations: an occupational health and safety assessment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 809-828, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cergibozan, Raif, 2022. "Renewable energy sources as a solution for energy security risk: Empirical evidence from OECD countries," Renewable Energy, Elsevier, vol. 183(C), pages 617-626.
    2. Sovacool, Benjamin K. & Kryman, Matthew & Laine, Emily, 2015. "Profiling technological failure and disaster in the energy sector: A comparative analysis of historical energy accidents," Energy, Elsevier, vol. 90(P2), pages 2016-2027.
    3. Hirschberg, Stefan & Bauer, Christian & Burgherr, Peter & Cazzoli, Eric & Heck, Thomas & Spada, Matteo & Treyer, Karin, 2016. "Health effects of technologies for power generation: Contributions from normal operation, severe accidents and terrorist threat," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 373-387.
    4. Marco Cinelli & Matteo Spada & Miłosz Kadziński & Grzegorz Miebs & Peter Burgherr, 2019. "Advancing Hazard Assessment of Energy Accidents in the Natural Gas Sector with Rough Set Theory and Decision Rules," Energies, MDPI, vol. 12(21), pages 1-17, November.
    5. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    6. Tomasz Jałowiec & Henryk Wojtaszek & Ireneusz Miciuła, 2021. "Green Energy Management through the Implementation of RES in the EU. Analysis of the Opinions of Poland and Germany," Energies, MDPI, vol. 14(23), pages 1-33, December.
    7. Burgherr, Peter & Hirschberg, Stefan, 2014. "Comparative risk assessment of severe accidents in the energy sector," Energy Policy, Elsevier, vol. 74(S1), pages 45-56.
    8. Zhu, Lei & Fan, Ying, 2010. "Optimization of China's generating portfolio and policy implications based on portfolio theory," Energy, Elsevier, vol. 35(3), pages 1391-1402.
    9. Boccard, Nicolas, 2018. "Safety along the energy chain," Energy, Elsevier, vol. 150(C), pages 1018-1030.
    10. Wang, Yuxin & Fu, Gui & Lyu, Qian & Wu, Yali & Jia, Qinsong & Yang, Xiaoyu & Li, Xiao, 2022. "Reform and development of coal mine safety in China: An analysis from government supervision, technical equipment, and miner education," Resources Policy, Elsevier, vol. 77(C).
    11. Scholtens, Bert & Boersen, Arieke, 2011. "Stocks and energy shocks: The impact of energy accidents on stock market value," Energy, Elsevier, vol. 36(3), pages 1698-1702.
    12. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    13. Hughes, Larry & de Jong, Moniek & Wang, Xiao Qin, 2016. "A generic method for analyzing the risks to energy systems," Applied Energy, Elsevier, vol. 180(C), pages 895-908.
    14. Spada, Matteo & Paraschiv, Florentina & Burgherr, Peter, 2018. "A comparison of risk measures for accidents in the energy sector and their implications on decision-making strategies," Energy, Elsevier, vol. 154(C), pages 277-288.
    15. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    16. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    17. Backhaus, Klaus & Gausling, Philipp & Hildebrand, Luise, 2015. "Comparing the incomparable: Lessons to be learned from models evaluating the feasibility of Desertec," Energy, Elsevier, vol. 82(C), pages 905-913.
    18. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    19. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    20. Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p2:p:1633-1638. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.