IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v93y2015ip1p406-415.html
   My bibliography  Save this article

Accurate assessment of the output energy from the doubly fed induction generators

Author

Listed:
  • El-Kharashi, Eyhab
  • Farid, Azmy Wadie

Abstract

Wind energy shows considerable promise for the future. Doubly fed induction generators (DFIGs) are attracting much attention in wind energy systems due to their unique advantages, including a reduced size power converter, as well as versatility in the independent control of active and reactive power. It is important to determine the precise output energy from the DFIG, particularly when the output voltage is unbalanced, in order to be able to undertake an accurate assessment of the entire output energy from the wind farm. This paper presents a new model for the doubly fed induction generator operating under unbalanced conditions. This model is deduced using the space vector and the angle of unbalanced current for the stator and the rotor currents. This model is used for the precise assessment of the output energy from the doubly fed induction generator, whether it generates either a balanced or unbalanced supply of voltage. Also the paper introduces a power circle diagram which translates the use of the proposed mathematical model by a simple way to stand one of the degrees of the unbalance during the unbalanced operation.

Suggested Citation

  • El-Kharashi, Eyhab & Farid, Azmy Wadie, 2015. "Accurate assessment of the output energy from the doubly fed induction generators," Energy, Elsevier, vol. 93(P1), pages 406-415.
  • Handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:406-415
    DOI: 10.1016/j.energy.2015.09.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215012669
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.09.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    2. Pichan, Mohammad & Rastegar, Hasan & Monfared, Mohammad, 2013. "Two fuzzy-based direct power control strategies for doubly-fed induction generators in wind energy conversion systems," Energy, Elsevier, vol. 51(C), pages 154-162.
    3. Sakthivel, V.P. & Subramanian, S., 2011. "On-site efficiency evaluation of three-phase induction motor based on particle swarm optimization," Energy, Elsevier, vol. 36(3), pages 1713-1720.
    4. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    5. Saad, Naggar H. & Sattar, Ahmed A. & Mansour, Abd El-Aziz M., 2015. "Low voltage ride through of doubly-fed induction generator connected to the grid using sliding mode control strategy," Renewable Energy, Elsevier, vol. 80(C), pages 583-594.
    6. Soares, Orlando & Gonçalves, Henrique & Martins, António & Carvalho, Adriano, 2010. "Nonlinear control of the doubly-fed induction generator in wind power systems," Renewable Energy, Elsevier, vol. 35(8), pages 1662-1670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ridha Cheikh & Hocine Belmili & Arezki Menacer & Said Drid & L. Chrifi-Alaoui, 2019. "Dynamic behavior analysis under a grid fault scenario of a 2 MW double fed induction generator-based wind turbine: comparative study of the reference frame orientation approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 632-643, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukla, Rishabh Dev & Tripathi, Ramesh Kumar & Thakur, Padmanabh, 2017. "DC grid/bus tied DFIG based wind energy system," Renewable Energy, Elsevier, vol. 108(C), pages 179-193.
    2. El-Kharashi, Eyhab & El-Dessouki, Maher, 2014. "Coupling induction motors to improve the energy conversion process during balanced and unbalanced operation," Energy, Elsevier, vol. 65(C), pages 511-516.
    3. El-Kharashi, Eyhab, 2014. "Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply," Energy, Elsevier, vol. 73(C), pages 513-522.
    4. Raju, S.Krishnama & Pillai, G.N., 2016. "Design and real time implementation of type-2 fuzzy vector control for DFIG based wind generators," Renewable Energy, Elsevier, vol. 88(C), pages 40-50.
    5. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    6. Honrubia-Escribano, A. & Gómez-Lázaro, E. & Fortmann, J. & Sørensen, P. & Martin-Martinez, S., 2018. "Generic dynamic wind turbine models for power system stability analysis: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1939-1952.
    7. Lei, Fei & Bai, Yingchun & Zhu, Wenhao & Liu, Jinhong, 2019. "A novel approach for electric powertrain optimization considering vehicle power performance, energy consumption and ride comfort," Energy, Elsevier, vol. 167(C), pages 1040-1050.
    8. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    9. Derafshian, Mehdi & Amjady, Nima, 2015. "Optimal design of power system stabilizer for power systems including doubly fed induction generator wind turbines," Energy, Elsevier, vol. 84(C), pages 1-14.
    10. Darvish Falehi, Ali, 2020. "An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    11. Zhang, Xinran & Lu, Chao & Liu, Shichao & Wang, Xiaoyu, 2016. "A review on wide-area damping control to restrain inter-area low frequency oscillation for large-scale power systems with increasing renewable generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 45-58.
    12. M. Abdelbasset Mahboub & Said Drid & M. A. Sid & Ridha Cheikh, 2017. "Sliding mode control of grid connected brushless doubly fed induction generator driven by wind turbine in variable speed," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 788-798, November.
    13. Moghadasi, Amirhasan & Sarwat, Arif & Guerrero, Josep M., 2016. "A comprehensive review of low-voltage-ride-through methods for fixed-speed wind power generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 823-839.
    14. Fu, Jianing & Yu, Xiangyang & Gao, Chunyang & Cui, Junda & Li, Youting, 2022. "Nonsingular fast terminal control for the DFIG-based variable-speed hydro-unit," Energy, Elsevier, vol. 244(PA).
    15. Gayen, P.K. & Chatterjee, D. & Goswami, S.K., 2015. "Stator side active and reactive power control with improved rotor position and speed estimator of a grid connected DFIG (doubly-fed induction generator)," Energy, Elsevier, vol. 89(C), pages 461-472.
    16. Lasantha Meegahapola & Alfeu Sguarezi & Jack Stanley Bryant & Mingchen Gu & Eliomar R. Conde D. & Rafael B. A. Cunha, 2020. "Power System Stability with Power-Electronic Converter Interfaced Renewable Power Generation: Present Issues and Future Trends," Energies, MDPI, vol. 13(13), pages 1-35, July.
    17. Yang, Bo & Yu, Tao & Shu, Hongchun & Dong, Jun & Jiang, Lin, 2018. "Robust sliding-mode control of wind energy conversion systems for optimal power extraction via nonlinear perturbation observers," Applied Energy, Elsevier, vol. 210(C), pages 711-723.
    18. Chatterjee, Arunava & Roy, Krishna & Chatterjee, Debashis, 2014. "A Gravitational Search Algorithm (GSA) based Photo-Voltaic (PV) excitation control strategy for single phase operation of three phase wind-turbine coupled induction generator," Energy, Elsevier, vol. 74(C), pages 707-718.
    19. Guo, Jingquan & Ma, Xinqiang & Ahmadpour, Ali, 2021. "Electrical–mechanical evaluation of the multi–cascaded induction motors under different conditions," Energy, Elsevier, vol. 229(C).
    20. Abderraouf Boumassata & Djallel Kerdoun, 2017. "Speed control of a doubly fed induction machine via an AC–AC converter," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(1), pages 407-412, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:93:y:2015:i:p1:p:406-415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.