IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v90y2015ip2p1994-2005.html
   My bibliography  Save this article

Reducing water usage with rotary regenerative gas/gas heat exchangers in natural gas-fired power plants with post-combustion carbon capture

Author

Listed:
  • Herraiz, Laura
  • Hogg, Dougal
  • Cooper, Jim
  • Gibbins, Jon
  • Lucquiaud, Mathieu

Abstract

It is possible to greatly mitigate the increase of water usage associated with the addition of carbon capture to fossil fuel power generation. This article presents a first-of-a-kind feasibility study of a series of technology options with rotary regenerative gas/gas heat exchangers for the management of the water balance around post-combustion carbon capture process integrated with CCGT (Combined Cycle Gas Turbine) plants with and without EGR (exhaust gas recirculation). Hybrid cooling configurations with a gas/gas heat exchanger upstream of the direct contact cooler reduce cooling and process water demand by 67% and 35% respectively compared to a wet system where the flue gas is primarily cooled prior to the absorber in larger direct contact coolers. The CO2-depleted gas stream is then reheated above 70 °C with enough buoyancy to rise through the stack. Dry air-cooled configurations, relying on ambient air as the cooling medium, eliminate the use of process and cooling water prior to the absorber and the temperature of the flue gas entering the absorber is unchanged. Rotary regenerative heat exchangers do not introduce significant additional pressure drop and gas leakage from a high CO2 concentration stream to a stream with lower concentration can be minimized to acceptable levels with available strategies using a purge and a scavenging slipstream from the higher pressure flow.

Suggested Citation

  • Herraiz, Laura & Hogg, Dougal & Cooper, Jim & Gibbins, Jon & Lucquiaud, Mathieu, 2015. "Reducing water usage with rotary regenerative gas/gas heat exchangers in natural gas-fired power plants with post-combustion carbon capture," Energy, Elsevier, vol. 90(P2), pages 1994-2005.
  • Handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1994-2005
    DOI: 10.1016/j.energy.2015.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215009275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhai, Haibo & Rubin, Edward S., 2010. "Performance and cost of wet and dry cooling systems for pulverized coal power plants with and without carbon capture and storage," Energy Policy, Elsevier, vol. 38(10), pages 5653-5660, October.
    2. Cormos, Calin-Cristian & Vatopoulos, Konstantinos & Tzimas, Evangelos, 2013. "Assessment of the consumption of water and construction materials in state-of-the-art fossil fuel power generation technologies involving CO2 capture," Energy, Elsevier, vol. 51(C), pages 37-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adams, T. & Mac Dowell, N., 2016. "Off-design point modelling of a 420MW CCGT power plant integrated with an amine-based post-combustion CO2 capture and compression process," Applied Energy, Elsevier, vol. 178(C), pages 681-702.
    2. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    3. Herraiz, Laura & Hogg, Dougal & Cooper, Jim & Lucquiaud, Mathieu, 2019. "Reducing the water usage of post-combustion capture systems: The role of water condensation/evaporation in rotary regenerative gas/gas heat exchangers," Applied Energy, Elsevier, vol. 239(C), pages 434-453.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herraiz, Laura & Hogg, Dougal & Cooper, Jim & Lucquiaud, Mathieu, 2019. "Reducing the water usage of post-combustion capture systems: The role of water condensation/evaporation in rotary regenerative gas/gas heat exchangers," Applied Energy, Elsevier, vol. 239(C), pages 434-453.
    2. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    3. Wu Haibo & Liu Zhaohui, 2018. "Economic research relating to a 200 MWe oxy‐fuel combustion power plant," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(5), pages 911-919, October.
    4. Sun, Yubiao & Guan, Zhiqiang & Gurgenci, Hal & Wang, Jianyong & Dong, Peixin & Hooman, Kamel, 2019. "Spray cooling system design and optimization for cooling performance enhancement of natural draft dry cooling tower in concentrated solar power plants," Energy, Elsevier, vol. 168(C), pages 273-284.
    5. Zhang, Lige & Spatari, Sabrina & Sun, Ying, 2020. "Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials," Applied Energy, Elsevier, vol. 271(C).
    6. Cormos, Calin-Cristian, 2020. "Energy and cost efficient manganese chemical looping air separation cycle for decarbonized power generation based on oxy-fuel combustion and gasification," Energy, Elsevier, vol. 191(C).
    7. Fontina Petrakopoulou & Marina Olmeda-Delgado, 2019. "Studying the Reduction of Water Use in Integrated Solar Combined-Cycle Plants," Sustainability, MDPI, vol. 11(7), pages 1-27, April.
    8. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Zhu, Yongnan & Ke, Jing & Wang, Jianhua & Liu, He & Jiang, Shan & Blum, Helcio & Zhao, Yong & He, Guohua & Meng, Yuan & Su, Jian, 2020. "Water transfer and losses embodied in the West–East electricity transmission project in China," Applied Energy, Elsevier, vol. 275(C).
    10. Suárez de la Fuente, Santiago & Larsen, Ulrik & Pierobon, Leonardo & Kærn, Martin R. & Haglind, Fredrik & Greig, Alistair, 2017. "Selection of cooling fluid for an organic Rankine cycle unit recovering heat on a container ship sailing in the Arctic region," Energy, Elsevier, vol. 141(C), pages 975-990.
    11. Wu, Zitao & Zhai, Haibo, 2021. "Consumptive life cycle water use of biomass-to-power plants with carbon capture and sequestration," Applied Energy, Elsevier, vol. 303(C).
    12. Meleesa Naughton & Richard C. Darton & Fai Fung, 2012. "Could Climate Change Limit Water Availability for Coal-Fired Electricity Generation with Carbon Capture and Storage? A UK Case Study," Energy & Environment, , vol. 23(2-3), pages 265-282, May.
    13. Wiser, Ryan & Bolinger, Mark & Heath, Garvin & Keyser, David & Lantz, Eric & Macknick, Jordan & Mai, Trieu & Millstein, Dev, 2016. "Long-term implications of sustained wind power growth in the United States: Potential benefits and secondary impacts," Applied Energy, Elsevier, vol. 179(C), pages 146-158.
    14. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    15. Lozano-Santamaria, Federico & Luceño, José A. & Martín, Mariano & Macchietto, Sandro, 2020. "Stochastic modelling of sandstorms affecting the optimal operation and cleaning scheduling of air coolers in concentrated solar power plants," Energy, Elsevier, vol. 213(C).
    16. Dinca, Cristian & Slavu, Nela & Cormoş, Călin-Cristian & Badea, Adrian, 2018. "CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process," Energy, Elsevier, vol. 149(C), pages 925-936.
    17. Jin, Yi & Behrens, Paul & Tukker, Arnold & Scherer, Laura, 2019. "Water use of electricity technologies: A global meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Pan, Lingying & Liu, Pei & Ma, Linwei & Li, Zheng, 2012. "A supply chain based assessment of water issues in the coal industry in China," Energy Policy, Elsevier, vol. 48(C), pages 93-102.
    19. Pourmoghadam, Peyman & Kasaeian, Alibakhsh, 2023. "Economic and energy evaluation of a solar multi-generation system powered by the parabolic trough collectors," Energy, Elsevier, vol. 262(PA).
    20. Kirtania, Bidesh & Shilapuram, Vidyasagar, 2023. "Performance evaluation of a flexible CO2-ORC and sorbent regeneration integrated novel dry gasification oxy-combustion power cycle for in-situ sulphur capture, CO2 capture and power generation," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:90:y:2015:i:p2:p:1994-2005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.