IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v72y2014icp501-509.html
   My bibliography  Save this article

Hybrid-input power supply with PFC (power factor corrector) and MPPT (maximum power point tracking) features for battery charging and HB-LED driving

Author

Listed:
  • Shen, Chih-Lung
  • Ko, Yong-Xian

Abstract

In this paper, a MSEBC (modified-SEPIC embedded-boost converter) is proposed, which can deal with either utility power or PV (photovoltaic) power to serve as HB-LED (High-Brightness Light-Emitting-Diode) driver and battery charger. While connected to utility, the proposed converter can perform PFC (power factor corrector) for universal line input. Once power failure occurs, it can draw energy from PV panel with MPPT (maximum power point tracking). Even if there is no utility power and PV energy, the MSEBC still can power on HB-LED from battery bank to achieve uninterruptable lighting feature. The topology of MSEBC is mainly derived from SEPIC-type converter as well as an embedded boost converter to develop a single-stage configuration, instead of multi-stage or two-stage type. Even though it only has single stage, both functions of HB-LED driving and battery charging still can be accomplished. In the MSEBC, a coupled inductor is adopted to replace the second inductor of traditional SEPIC and the chock of boost converter. A microprocessor-based controller is developed to accomplish all converter functions. A prototype, which have the functions of dealing with universal line input 85 ∼ 265 Vrms, performing power factor correction, tracking maximum power for PV panel, lighting HB-LED, and charging/discharging battery, is carried out. Key measurements have verified the feasibility, functionality, and validity.

Suggested Citation

  • Shen, Chih-Lung & Ko, Yong-Xian, 2014. "Hybrid-input power supply with PFC (power factor corrector) and MPPT (maximum power point tracking) features for battery charging and HB-LED driving," Energy, Elsevier, vol. 72(C), pages 501-509.
  • Handle: RePEc:eee:energy:v:72:y:2014:i:c:p:501-509
    DOI: 10.1016/j.energy.2014.05.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214006392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.05.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mirzaei, Amin & Jusoh, Awang & Salam, Zainal, 2012. "Design and implementation of high efficiency non-isolated bidirectional zero voltage transition pulse width modulated DC–DC converters," Energy, Elsevier, vol. 47(1), pages 358-369.
    2. Huang, Ton-Churo & Leu, Yih-Guang & Chang, Yuan-Chang & Hou, Sheng-Yun & Li, Cheng-Chou, 2013. "An energy harvester using self-powered feed forward converter charging approach," Energy, Elsevier, vol. 55(C), pages 769-777.
    3. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    4. Bouilouta, A. & Mellit, A. & Kalogirou, S.A., 2013. "New MPPT method for stand-alone photovoltaic systems operating under partially shaded conditions," Energy, Elsevier, vol. 55(C), pages 1172-1185.
    5. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    6. Punitha, K. & Devaraj, D. & Sakthivel, S., 2013. "Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions," Energy, Elsevier, vol. 62(C), pages 330-340.
    7. Cheng-Tao Tsai & Chih-Lung Shen, 2012. "A High Step-Down Interleaved Buck Converter with Active-Clamp Circuits for Wind Turbines," Energies, MDPI, vol. 5(12), pages 1-21, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathabadi, Hassan, 2016. "Novel fast dynamic MPPT (maximum power point tracking) technique with the capability of very high accurate power tracking," Energy, Elsevier, vol. 94(C), pages 466-475.
    2. Fathabadi, Hassan, 2016. "Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems," Applied Energy, Elsevier, vol. 173(C), pages 448-459.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aiswariya Sekar & Dhanasekaran Raghavan, 2015. "Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles," Energies, MDPI, vol. 8(11), pages 1-16, November.
    2. Daraban, Stefan & Petreus, Dorin & Morel, Cristina, 2014. "A novel MPPT (maximum power point tracking) algorithm based on a modified genetic algorithm specialized on tracking the global maximum power point in photovoltaic systems affected by partial shading," Energy, Elsevier, vol. 74(C), pages 374-388.
    3. Osmani, Khaled & Haddad, Ahmad & Lemenand, Thierry & Castanier, Bruno & Ramadan, Mohamad, 2021. "An investigation on maximum power extraction algorithms from PV systems with corresponding DC-DC converters," Energy, Elsevier, vol. 224(C).
    4. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    5. Hauge, H.H. & Presser, V. & Burheim, O., 2014. "In-situ and ex-situ measurements of thermal conductivity of supercapacitors," Energy, Elsevier, vol. 78(C), pages 373-383.
    6. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    7. Fantino, Roberto & Busada, Claudio & Solsona, Jorge, 2015. "Current controller for a bidirectional boost input stage equipped with an LCL (inductance–capacitance–inductance) filter," Energy, Elsevier, vol. 84(C), pages 91-97.
    8. Sheik Mohammed, S. & Devaraj, D. & Imthias Ahamed, T.P., 2016. "A novel hybrid Maximum Power Point Tracking Technique using Perturb & Observe algorithm and Learning Automata for solar PV system," Energy, Elsevier, vol. 112(C), pages 1096-1106.
    9. Boukenoui, R. & Ghanes, M. & Barbot, J.-P. & Bradai, R. & Mellit, A. & Salhi, H., 2017. "Experimental assessment of Maximum Power Point Tracking methods for photovoltaic systems," Energy, Elsevier, vol. 132(C), pages 324-340.
    10. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    11. Prasanth Ram, J. & Rajasekar, N., 2017. "A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC)," Energy, Elsevier, vol. 118(C), pages 512-525.
    12. Mehrasa, Majid & Pouresmaeil, Edris & Akorede, Mudathir Funsho & Jørgensen, Bo Nørregaard & Catalão, João P.S., 2015. "Multilevel converter control approach of active power filter for harmonics elimination in electric grids," Energy, Elsevier, vol. 84(C), pages 722-731.
    13. Yao, Ganzhou & Luo, Zirong & Lu, Zhongyue & Wang, Mangkuan & Shang, Jianzhong & Guerrerob, Josep M., 2023. "Unlocking the potential of wave energy conversion: A comprehensive evaluation of advanced maximum power point tracking techniques and hybrid strategies for sustainable energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    14. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    15. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    16. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    17. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    18. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    19. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    20. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:501-509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.