IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v69y2014icp370-377.html
   My bibliography  Save this article

Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis

Author

Listed:
  • Sun, Jinsheng
  • Dai, Leilei
  • Shi, Ming
  • Gao, Hong
  • Cao, Xijia
  • Liu, Guangxin

Abstract

In our previous work, a significant improvement in organosilicon monomer distillation using parallel double-effect heat integration between a heavies removal column and six other columns, as well as heat integration between methyltrichlorosilane and dimethylchlorosilane columns, reduced the total exergy loss of the currently running counterpart by 40.41%. Further research regarding this optimized scheme demonstrated that it was necessary to reduce the higher operating pressure of the methyltrichlorosilane column, which is required for heat integration between the methyltrichlorosilane and dimethylchlorosilane columns. Therefore, in this contribution, a challenger scheme is presented with heat pumps introduced separately from the originally heat-coupled methyltrichlorosilane and dimethylchlorosilane columns in the above-mentioned optimized scheme, which is the prototype for this work. Both schemes are simulated using the same purity requirements used in running industrial units. The thermodynamic properties from the simulation are used to calculate the energy consumption and exergy loss of the two schemes. The results show that the heat pump option further reduces the flowsheet energy consumption and exergy loss by 27.35% and 10.98% relative to the prototype scheme. These results indicate that the heat pumps are superior to heat integration in the context of energy-savings during organosilicon monomer distillation.

Suggested Citation

  • Sun, Jinsheng & Dai, Leilei & Shi, Ming & Gao, Hong & Cao, Xijia & Liu, Guangxin, 2014. "Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis," Energy, Elsevier, vol. 69(C), pages 370-377.
  • Handle: RePEc:eee:energy:v:69:y:2014:i:c:p:370-377
    DOI: 10.1016/j.energy.2014.03.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214002898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.03.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Suphanit, B. & Bischert, A. & Narataruksa, P., 2007. "Exergy loss analysis of heat transfer across the wall of the dividing-wall distillation column," Energy, Elsevier, vol. 32(11), pages 2121-2134.
    2. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    3. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    4. Khoa, T.D. & Shuhaimi, M. & Nam, H.M., 2012. "Application of three dimensional exergy analysis curves for absorption columns," Energy, Elsevier, vol. 37(1), pages 273-280.
    5. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Wu, Peng & Liu, Lili, 2012. "Energy and exergy analysis of a five-column methanol distillation scheme," Energy, Elsevier, vol. 45(1), pages 696-703.
    6. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    7. Araújo, Antonio B. & Brito, Romildo P. & Vasconcelos, Luís S., 2007. "Exergetic analysis of distillation processes—A case study," Energy, Elsevier, vol. 32(7), pages 1185-1193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    2. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    3. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Wu, Peng & Liu, Lili, 2012. "Energy and exergy analysis of a five-column methanol distillation scheme," Energy, Elsevier, vol. 45(1), pages 696-703.
    4. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    5. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    6. Haragovics, Máté & Mizsey, Péter, 2014. "A novel application of exergy analysis: Lean manufacturing tool to improve energy efficiency and flexibility of hydrocarbon processing," Energy, Elsevier, vol. 77(C), pages 382-390.
    7. Cui, Chengtian & Li, Xingang & Sui, Hong & Sun, Jinsheng, 2017. "Optimization of coal-based methanol distillation scheme using process superstructure method to maximize energy efficiency," Energy, Elsevier, vol. 119(C), pages 110-120.
    8. Kim, Young Han, 2014. "Application of partially diabatic divided wall column to floating liquefied natural gas plant," Energy, Elsevier, vol. 70(C), pages 435-443.
    9. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    10. Kim, Young Han, 2015. "Energy saving of side-column DWCs for quaternary separation," Energy, Elsevier, vol. 86(C), pages 617-626.
    11. Osuolale, Funmilayo N. & Zhang, Jie, 2016. "Energy efficiency optimisation for distillation column using artificial neural network models," Energy, Elsevier, vol. 106(C), pages 562-578.
    12. Liu, Siyao & Cui, Chengtian & He, Jie & Sun, Jinsheng, 2018. "Feasibility assessment of a novel refrigeration FCC gas plant driven by self waste heat," Energy, Elsevier, vol. 145(C), pages 356-366.
    13. Nguyen, Nghi & Demirel, Yaşar, 2011. "Using thermally coupled reactive distillation columns in biodiesel production," Energy, Elsevier, vol. 36(8), pages 4838-4847.
    14. Long, Nguyen Van Duc & Lee, Moonyong, 2015. "A hybrid technology combining heat pump and thermally coupled distillation sequence for retrofit and debottlenecking," Energy, Elsevier, vol. 81(C), pages 103-110.
    15. Nguyen, Nghi & Demirel, Yaşar, 2010. "Retrofit of distillation columns in biodiesel production plants," Energy, Elsevier, vol. 35(4), pages 1625-1632.
    16. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    17. Arriola-Medellín, Alejandro & Manzanares-Papayanopoulos, Emilio & Romo-Millares, César, 2014. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis," Energy, Elsevier, vol. 72(C), pages 643-651.
    18. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    19. Li, Chen & Wang, Yinglong & Chen, Guanghui & Li, Quan & Gu, Xinchun & Li, Xin & Wang, Yuguang & Zhu, Zhaoyou & Li, Jianlong, 2022. "Thermodynamic analysis and process optimization of organosilicon distillation systems," Energy, Elsevier, vol. 252(C).
    20. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:69:y:2014:i:c:p:370-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.