IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v66y2014icp556-568.html
   My bibliography  Save this article

Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant

Author

Listed:
  • Zhang, Kefang
  • Liu, Zhongliang
  • Wang, Yuanya
  • Li, Yanxia
  • Li, Qingfang
  • Zhang, Jian
  • Liu, Haili

Abstract

In this paper, flash evaporation and thermal vapor compression are used to reduce heat consumption of CO2 capture processes and two improved capture systems are proposed. One is the flash evaporator (FE) and thermal vapor compressor (TVC)-aided system, the other is the heated flash evaporator (HFE) and thermal vapor compressor (TVC)-aided system. Analyses are carried out to verify their effectiveness in reducing heat consumption. Compared with the base CO2 capture system of 108.76t/h CO2 capture capacity from a 660 MW coal-fired power unit, the FE-TVC-aided capture system reduces the specific heat consumption from 4.421GJ/tCO2 to 4.161GJ/tCO2, and the specific exergy consumption from 1.368GJ/tCO2 to 1.275GJ/tCO2, the corresponding energy saving and exergy saving are 10.3%, and the plant electric efficiency penalty is decreased from 11.83% to 11.02%, on condition that the CO2 recovery ratio is set at 90%. Compared with the base CO2 capture system, the HFE-TVC-aided capture system reduces the heat consumption from 4.421GJ/tCO2 to 4.057GJ/tCO2, and the specific exergy consumption from 1.368GJ/tCO2 to 1.243GJ/tCO2, the corresponding energy saving and exergy saving are 12.5%, and the plant electric efficiency penalty is decreased from 11.83% to 10.80%.

Suggested Citation

  • Zhang, Kefang & Liu, Zhongliang & Wang, Yuanya & Li, Yanxia & Li, Qingfang & Zhang, Jian & Liu, Haili, 2014. "Flash evaporation and thermal vapor compression aided energy saving CO2 capture systems in coal-fired power plant," Energy, Elsevier, vol. 66(C), pages 556-568.
  • Handle: RePEc:eee:energy:v:66:y:2014:i:c:p:556-568
    DOI: 10.1016/j.energy.2014.01.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214000851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.01.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cristóbal, Jorge & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Irabien, Angel, 2012. "Multi-objective optimization of coal-fired electricity production with CO2 capture," Applied Energy, Elsevier, vol. 98(C), pages 266-272.
    2. Pekala, Lukasz M. & Tan, Raymond R. & Foo, Dominic C.Y. & Jezowski, Jacek M., 2010. "Optimal energy planning models with carbon footprint constraints," Applied Energy, Elsevier, vol. 87(6), pages 1903-1910, June.
    3. Xu, Gang & Yang, Yong-ping & Ding, Jie & Li, Shoucheng & Liu, Wenyi & Zhang, Kai, 2013. "Analysis and optimization of CO2 capture in an existing coal-fired power plant in China," Energy, Elsevier, vol. 58(C), pages 117-127.
    4. Kotowicz, Janusz & Bartela, Łukasz, 2012. "Optimisation of the connection of membrane CCS installation with a supercritical coal-fired power plant," Energy, Elsevier, vol. 38(1), pages 118-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashrafi, Omid & Bashiri, Hamed & Esmaeili, Amin & Sapoundjiev, Hristo & Navarri, Philippe, 2018. "Ejector integration for the cost effective design of the Selexol™ process," Energy, Elsevier, vol. 162(C), pages 380-392.
    2. Kefang Zhang & Zhongliang Liu & Zhaoliang Wang & Yanxia Li, 2016. "Specific exergy consumption as an index for steam extraction scheme selection for CO 2 capture systems in coal‐fired power plants," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(2), pages 275-287, April.
    3. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    4. Nwaoha, Chikezie & Tontiwachwuthikul, Paitoon, 2019. "Carbon dioxide capture from pulp mill using 2-amino-2-methyl-1-propanol and monoethanolamine blend: Techno-economic assessment of advanced process configuration," Applied Energy, Elsevier, vol. 250(C), pages 1202-1216.
    5. Reddick, Christopher & Sorin, Mikhail & Sapoundjiev, Hristo & Aidoun, Zine, 2016. "Carbon capture simulation using ejectors for waste heat upgrading," Energy, Elsevier, vol. 100(C), pages 251-261.
    6. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    7. Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Safdarnejad, Seyed Mostafa & Hedengren, John D. & Powell, Kody M., 2018. "Performance comparison of low temperature and chemical absorption carbon capture processes in response to dynamic electricity demand and price profiles," Applied Energy, Elsevier, vol. 228(C), pages 577-592.
    2. Mohd Yasin, Nazlina Haiza & Maeda, Toshinari & Hu, Anyi & Yu, Chang-Ping & Wood, Thomas K., 2015. "CO2 sequestration by methanogens in activated sludge for methane production," Applied Energy, Elsevier, vol. 142(C), pages 426-434.
    3. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    4. Kristoffersen, Trine Krogh & Capion, Karsten & Meibom, Peter, 2011. "Optimal charging of electric drive vehicles in a market environment," Applied Energy, Elsevier, vol. 88(5), pages 1940-1948, May.
    5. Cormos, Calin-Cristian, 2014. "Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle," Energy, Elsevier, vol. 78(C), pages 665-673.
    6. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    7. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    8. Zhang, Minkai & Guo, Yincheng, 2013. "Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution," Applied Energy, Elsevier, vol. 111(C), pages 142-152.
    9. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    10. José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
    11. Shen Wang & Guohe Huang & Yurui Fan, 2018. "A Multistage Distribution-Generation Planning Model for Clean Power Generation under Multiple Uncertainties—A Case Study of Urumqi, China," Sustainability, MDPI, vol. 10(9), pages 1-30, September.
    12. Janusz-Szymańska, Katarzyna & Dryjańska, Aleksandra, 2015. "Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit," Energy, Elsevier, vol. 85(C), pages 45-61.
    13. Li, Chunxi & Guo, Shiqi & Ye, Xuemin & Fu, Wenfeng, 2019. "Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture," Energy, Elsevier, vol. 177(C), pages 1-15.
    14. Behrangrad, Mahdi & Sugihara, Hideharu & Funaki, Tsuyoshi, 2011. "Effect of optimal spinning reserve requirement on system pollution emission considering reserve supplying demand response in the electricity market," Applied Energy, Elsevier, vol. 88(7), pages 2548-2558, July.
    15. Hou, Jin & Xu, Peng & Lu, Xing & Pang, Zhihong & Chu, Yiyi & Huang, Gongsheng, 2018. "Implementation of expansion planning in existing district energy system: A case study in China," Applied Energy, Elsevier, vol. 211(C), pages 269-281.
    16. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    17. Bentsen, Niclas Scott & Jack, Michael W. & Felby, Claus & Thorsen, Bo Jellesmark, 2014. "Allocation of biomass resources for minimising energy system greenhouse gas emissions," Energy, Elsevier, vol. 69(C), pages 506-515.
    18. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    19. Qipeng Sun & Yafang Geng & Fei Ma & Chao Wang & Bo Wang & Xiu Wang & Wenlin Wang, 2018. "Spatial–Temporal Evolution and Factor Decomposition for Ecological Pressure of Carbon Footprint in the One Belt and One Road," Sustainability, MDPI, vol. 10(9), pages 1-22, August.
    20. Xie, Y.L. & Huang, G.H. & Li, W. & Ji, L., 2014. "Carbon and air pollutants constrained energy planning for clean power generation with a robust optimization model—A case study of Jining City, China," Applied Energy, Elsevier, vol. 136(C), pages 150-167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:66:y:2014:i:c:p:556-568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.