IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v61y2013icp128-138.html
   My bibliography  Save this article

Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A

Author

Listed:
  • Jouhara, Hussam
  • Ezzuddin, Hatem

Abstract

An experimental investigation of the performance of a wraparound loop heat pipe (WLHP) charged with R134a is reported in this paper. The copper WLHP has a two-pass evaporator section and a two-pass condenser section, each pass is 330 mm in length with an inner tube diameter of 11.2 mm. The considered configuration is similar to that used to build industrial heat exchangers, which are used for heat recovery in energy efficient air handling units. R134a is chosen as the WLHP working fluid as it is widely used. A variable output electrical heater was used to heat the evaporator section with the condenser section being cooled using a 2-pass shell and tube heat exchanger, equipped with 7 baffles to enforce coolant (water) cross flow around the condenser tubes. An average heat pipe thermal resistance expression, based on the experimental data, is introduced and used to characterise the thermal performance for the WLHP under the considered experimental conditions. The nature of the heat transfer processes and the working fluid path within the heat pipe are analysed under various operational conditions and areas of enhancement for this type of heat pipes are identified. An average value for the WLHP overall effective thermal resistances as low as 0.048 °C/W is reported.

Suggested Citation

  • Jouhara, Hussam & Ezzuddin, Hatem, 2013. "Thermal performance characteristics of a wraparound loop heat pipe (WLHP) charged with R134A," Energy, Elsevier, vol. 61(C), pages 128-138.
  • Handle: RePEc:eee:energy:v:61:y:2013:i:c:p:128-138
    DOI: 10.1016/j.energy.2012.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212007785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meena, P. & Rittidech, S. & Poomsa-ad, N., 2007. "Closed-loop oscillating heat-pipe with check valves (CLOHP/CVs) air-preheater for reducing relative humidity in drying systems," Applied Energy, Elsevier, vol. 84(4), pages 363-373, April.
    2. Hammad, M., 1995. "Experimental study of the performance of a solar collector cooled by heat pipes," Renewable Energy, Elsevier, vol. 6(1), pages 11-15.
    3. Sabir, H. M. & Bwalya, A. C., 2002. "Experimental study of capillary-assisted water evaporators for vapour-absorption systems," Applied Energy, Elsevier, vol. 71(1), pages 45-57, January.
    4. Hussein, H.M.S. & Mohamad, M.A. & El-Asfouri, A.S., 2001. "Theoretical analysis of laminar-film condensation heat transfer inside inclined wickless heat pipes flat-plate solar collector," Renewable Energy, Elsevier, vol. 23(3), pages 525-535.
    5. Du, Jun & Bansal, Pradeep & Huang, Bo, 2012. "Simulation model of a greenhouse with a heat-pipe heating system," Applied Energy, Elsevier, vol. 93(C), pages 268-276.
    6. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    7. Shatat, Mahmoud. I.M. & Mahkamov, K., 2010. "Determination of rational design parameters of a multi-stage solar water desalination still using transient mathematical modelling," Renewable Energy, Elsevier, vol. 35(1), pages 52-61.
    8. Jianfeng, Lu & Jing, Ding & Jianping, Yang, 2010. "Heat transfer performance and exergetic optimization for solar receiver pipe," Renewable Energy, Elsevier, vol. 35(7), pages 1477-1483.
    9. Riffat, S.B. & Zhao, X., 2004. "A novel hybrid heat-pipe solar collector/CHP system—Part II: theoretical and experimental investigations," Renewable Energy, Elsevier, vol. 29(12), pages 1965-1990.
    10. Singh, Randeep & Mochizuki, Masataka & Mashiko, Koichi & Nguyen, Thang, 2011. "Heat pipe based cold energy storage systems for datacenter energy conservation," Energy, Elsevier, vol. 36(5), pages 2802-2811.
    11. Chotivisarut, Nammont & Nuntaphan, Atipoang & Kiatsiriroat, Tanongkiat, 2012. "Seasonal cooling load reduction of building by thermosyphon heat pipe radiator in different climate areas," Renewable Energy, Elsevier, vol. 38(1), pages 188-194.
    12. Hussam Jouhara, 2009. "Economic assessment of the benefits of wraparound heat pipes in ventilation processes for hot and humid climates," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 4(1), pages 52-60, March.
    13. El Fadar, A. & Mimet, A. & Pérez-García, M., 2009. "Study of an adsorption refrigeration system powered by parabolic trough collector and coupled with a heat pipe," Renewable Energy, Elsevier, vol. 34(10), pages 2271-2279.
    14. Al-Hindi, R. R. & Khalifa, A. M. A. & Akyurt, M., 1988. "Simulation studies of the behaviour of a heat pipe-assisted solar absorption refrigerator," Applied Energy, Elsevier, vol. 30(1), pages 61-80.
    15. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    16. Riffat, S.B. & Zhao, X., 2004. "A novel hybrid heat pipe solar collector/CHP system—Part 1: System design and construction," Renewable Energy, Elsevier, vol. 29(15), pages 2217-2233.
    17. Meena, P. & Rittidech, S. & Poomsa-ad, N., 2007. "Application of closed-loop oscillating heat-pipe with check valves (CLOHP/CV) air-preheater for reduced relative-humidity in drying systems," Applied Energy, Elsevier, vol. 84(5), pages 553-564, May.
    18. Weng, Ying-Che & Cho, Hung-Pin & Chang, Chih-Chung & Chen, Sih-Li, 2011. "Heat pipe with PCM for electronic cooling," Applied Energy, Elsevier, vol. 88(5), pages 1825-1833, May.
    19. Nkwetta, Dan Nchelatebe & Smyth, Mervyn & Zacharopoulos, Aggelos & Hyde, Trevor, 2012. "Optical evaluation and analysis of an internal low-concentrated evacuated tube heat pipe solar collector for powering solar air-conditioning systems," Renewable Energy, Elsevier, vol. 39(1), pages 65-70.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    2. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    3. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    4. Donnellan, Philip & Cronin, Kevin & Acevedo, Yaset & Byrne, Edmond, 2014. "Economic evaluation of an industrial high temperature lift heat transformer," Energy, Elsevier, vol. 73(C), pages 581-591.
    5. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jouhara, Hussam & Ajji, Zaki & Koudsi, Yahia & Ezzuddin, Hatem & Mousa, Nisreen, 2013. "Experimental investigation of an inclined-condenser wickless heat pipe charged with water and an ethanol–water azeotropic mixture," Energy, Elsevier, vol. 61(C), pages 139-147.
    2. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    3. Jiaqiang, E. & Zhao, Xiaohuan & Liu, Haili & Chen, Jianmei & Zuo, Wei & Peng, Qingguo, 2016. "Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe," Applied Energy, Elsevier, vol. 175(C), pages 218-228.
    4. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    5. Natthakit Ritthong & Sommart Thongkom & Apichai Sawisit & Boonyabhorn Duangsa & Wirote Ritthong, 2024. "Optimization Design of Closed-Loop Thermosyphons: Experimentation and Computational Fluid Dynamics Modeling," Energies, MDPI, vol. 17(2), pages 1-18, January.
    6. Danielewicz, J. & Sayegh, M.A. & Śniechowska, B. & Szulgowska-Zgrzywa, M. & Jouhara, H., 2014. "Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers," Energy, Elsevier, vol. 77(C), pages 82-87.
    7. Ewa Zender–Świercz, 2021. "A Review of Heat Recovery in Ventilation," Energies, MDPI, vol. 14(6), pages 1-23, March.
    8. Jafari, Davoud & Franco, Alessandro & Filippeschi, Sauro & Di Marco, Paolo, 2016. "Two-phase closed thermosyphons: A review of studies and solar applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 575-593.
    9. Amini, Amir & Miller, Jeremy & Jouhara, Hussam, 2017. "An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers," Energy, Elsevier, vol. 136(C), pages 163-172.
    10. Jouhara, Hussam & Meskimmon, Richard, 2010. "Experimental investigation of wraparound loop heat pipe heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 35(12), pages 4592-4599.
    11. Jouhara, H. & Szulgowska-Zgrzywa, M. & Sayegh, M.A. & Milko, J. & Danielewicz, J. & Nannou, T.K. & Lester, S.P., 2017. "The performance of a heat pipe based solar PV/T roof collector and its potential contribution in district heating applications," Energy, Elsevier, vol. 136(C), pages 117-125.
    12. Jouhara, Hussam & Almahmoud, Sulaiman & Brough, Daniel & Guichet, Valentin & Delpech, Bertrand & Chauhan, Amisha & Ahmad, Lujean & Serey, Nicolas, 2021. "Experimental and theoretical investigation of the performance of an air to water multi-pass heat pipe-based heat exchanger," Energy, Elsevier, vol. 219(C).
    13. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    14. Sarafraz, M.M. & Pourmehran, O. & Yang, B. & Arjomandi, M., 2019. "Assessment of the thermal performance of a thermosyphon heat pipe using zirconia-acetone nanofluids," Renewable Energy, Elsevier, vol. 136(C), pages 884-895.
    15. Jouhara, H. & Milko, J. & Danielewicz, J. & Sayegh, M.A. & Szulgowska-Zgrzywa, M. & Ramos, J.B. & Lester, S.P., 2016. "The performance of a novel flat heat pipe based thermal and PV/T (photovoltaic and thermal systems) solar collector that can be used as an energy-active building envelope material," Energy, Elsevier, vol. 108(C), pages 148-154.
    16. Jouhara, Hussam & Merchant, Hasnain, 2012. "Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units," Energy, Elsevier, vol. 39(1), pages 82-89.
    17. Zeng, M. & Du, L.X. & Liao, D. & Chu, W.X. & Wang, Q.W. & Luo, Y. & Sun, Y., 2012. "Investigation on pressure drop and heat transfer performances of plate-fin iron air preheater unit with experimental and Genetic Algorithm methods," Applied Energy, Elsevier, vol. 92(C), pages 725-732.
    18. Zhai, H. & Dai, Y.J. & Wu, J.Y. & Wang, R.Z., 2009. "Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas," Applied Energy, Elsevier, vol. 86(9), pages 1395-1404, September.
    19. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    20. Alireza Esmaeilzadeh & Mahyar Silakhori & Nik Nazri Nik Ghazali & Hendrik Simon Cornelis Metselaar & Azuddin Bin Mamat & Mohammad Sajad Naghavi Sanjani & Soudeh Iranmanesh, 2020. "Thermal Performance and Numerical Simulation of the 1-Pyrene Carboxylic-Acid Functionalized Graphene Nanofluids in a Sintered Wick Heat Pipe," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:61:y:2013:i:c:p:128-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.