IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v46y2012i1p5-15.html
   My bibliography  Save this article

Potential options to greenize energy systems

Author

Listed:
  • Dincer, Ibrahim
  • Zamfirescu, Calin

Abstract

In this paper, we introduce a new thermodynamic concept of greenizing energy systems and propose a new greenization factor which is defined as the amount of environmental impact reduction by the system greenized divided by the reference environmental impact for the original (reference) case. A greenization factor of 1 indicates that the system is fully greenized case in which its environmental impact is zero or minimal. The greenization options of energy systems are studied extensively for an actual coal-fired power plant in Ontario. Multiple case studies are presented under various greenization criteria. The greenization factors and sustainability indexes for each option are determined and presented comparatively. The results can be extended to other energy systems, processes and applications (e.g., fossil fuel based power plants and transportation vehicles) for assessment purposes.

Suggested Citation

  • Dincer, Ibrahim & Zamfirescu, Calin, 2012. "Potential options to greenize energy systems," Energy, Elsevier, vol. 46(1), pages 5-15.
  • Handle: RePEc:eee:energy:v:46:y:2012:i:1:p:5-15
    DOI: 10.1016/j.energy.2011.11.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007924
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.11.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoffrey P. Hammond, 2004. "Engineering Sustainability: Thermodynamics, Energy Systems and the Environment," Palgrave Macmillan Books, in: Adrian Winnett (ed.), Towards an Environment Research Agenda, chapter 8, pages 175-210, Palgrave Macmillan.
    2. Midilli, Adnan & Dincer, Ibrahim & Ay, Murat, 2006. "Green energy strategies for sustainable development," Energy Policy, Elsevier, vol. 34(18), pages 3623-3633, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    2. Hogerwaard, Janette & Dincer, Ibrahim & Zamfirescu, Calin, 2013. "Analysis and assessment of a new organic Rankine based heat engine system with/without cogeneration," Energy, Elsevier, vol. 62(C), pages 300-310.
    3. Malik, Monu & Dincer, Ibrahim & Rosen, Marc A., 2015. "Development and analysis of a new renewable energy-based multi-generation system," Energy, Elsevier, vol. 79(C), pages 90-99.
    4. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    2. Carolino, Cristina Guedes & Medeiros Ferreira, João Paulo, 2013. "First and second law analyses to an energetic valorization process of biogas," Renewable Energy, Elsevier, vol. 59(C), pages 58-64.
    3. Shengli Dai & Weimin Zhang & Jiamin Zong & Yingying Wang & Ge Wang, 2021. "How Effective Is the Green Development Policy of China’s Yangtze River Economic Belt? A Quantitative Evaluation Based on the PMC-Index Model," IJERPH, MDPI, vol. 18(14), pages 1-17, July.
    4. Theuretzbacher, Franz & Bauer, Alexander & Lizasoain, Javier & Becker, Manuel & Rosenau, Thomas & Potthast, Antje & Friedl, Anton & Piringer, Gerhard & Gronauer, Andreas, 2013. "Potential of different Sorghum bicolor (L. moench) varieties for combined ethanol and biogas production in the Pannonian climate of Austria," Energy, Elsevier, vol. 55(C), pages 107-113.
    5. Dyer, Caroline H. & Hammond, Geoffrey P. & Jones, Craig I. & McKenna, Russell C., 2008. "Enabling technologies for industrial energy demand management," Energy Policy, Elsevier, vol. 36(12), pages 4434-4443, December.
    6. John Bryant, 2008. "Thermodynamics and the Economic Process," Working Papers ten62008, Economic Consultancy, Vocat International.
    7. Hugé, Jean & Waas, Tom & Eggermont, Gilbert & Verbruggen, Aviel, 2011. "Impact assessment for a sustainable energy future'Reflections and practical experiences," Energy Policy, Elsevier, vol. 39(10), pages 6243-6253, October.
    8. Damien Bazin & Emna Omri & Nouri Chtourou, 2015. "Solar Thermal Energy for Sustainable Development in Tunisia," Post-Print halshs-01070616, HAL.
    9. Chen, Shaoqing & Chen, Bin, 2014. "Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation," Applied Energy, Elsevier, vol. 115(C), pages 151-163.
    10. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    11. Gasparatos, Alexandros & El-Haram, Mohamed & Horner, Malcolm, 2009. "Assessing the sustainability of the UK society using thermodynamic concepts: Part 1," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1074-1081, June.
    12. Naveed Razzaq & Faqeer Muhammad & Rehmat Karim & Muhammad Tariq & Khair Muhammad, 2021. "The Nexus between Energy, Environment and Growth: Evidence from Latin-American Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 82-87.
    13. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    14. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    15. Nunzia Capobianco & Vincenzo Basile & Francesca Loia & Roberto Vona, 2021. "Toward a Sustainable Decommissioning of Offshore Platforms in the Oil and Gas Industry: A PESTLE Analysis," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    16. Pedro V Hernandez Serrano & Amrapali Zaveri, 2020. "Venturing the Definition of Green Energy Transition: A systematic literature review," Papers 2004.10562, arXiv.org, revised Apr 2020.
    17. Most Asikha Aktar & Mukaramah Binti & Md Mahmudul Alam, 2021. "Green Path Development and Green Regional Restructuring for Sustainable Development," Post-Print hal-03520061, HAL.
    18. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava, 2018. "Social acceptance of green energy determinants using principal component analysis," Energy, Elsevier, vol. 160(C), pages 1030-1046.
    19. Haoran Zhao & Sen Guo & Huiru Zhao, 2018. "Selecting the Optimal Micro-Grid Planning Program Using a Novel Multi-Criteria Decision Making Model Based on Grey Cumulative Prospect Theory," Energies, MDPI, vol. 11(7), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:46:y:2012:i:1:p:5-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.