IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2333-2337.html
   My bibliography  Save this article

Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

Author

Listed:
  • Sarin, Amit
  • Arora, Rajneesh
  • Singh, N.P.
  • Sarin, Rakesh
  • Malhotra, R.K.
  • Sharma, Meeta
  • Khan, Arif Ali

Abstract

Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 °C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30–50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification.

Suggested Citation

  • Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K. & Sharma, Meeta & Khan, Arif Ali, 2010. "Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel," Energy, Elsevier, vol. 35(5), pages 2333-2337.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2333-2337
    DOI: 10.1016/j.energy.2010.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sharma, Meeta & Malhotra, R.K., 2009. "Influence of metal contaminants on oxidation stability of Jatropha biodiesel," Energy, Elsevier, vol. 34(9), pages 1271-1275.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    2. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    3. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    4. A. K. Azad, 2017. "Biodiesel from Mandarin Seed Oil: A Surprising Source of Alternative Fuel," Energies, MDPI, vol. 10(11), pages 1-22, October.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    6. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    7. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    8. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    9. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    10. Sarin, Amit & Arora, Rajneesh & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Blends of biodiesels synthesized from non-edible and edible oils: Influence on the OS (oxidation stability)," Energy, Elsevier, vol. 35(8), pages 3449-3453.
    11. Md Mofijur Rahman & Mohammad Rasul & Nur Md Sayeed Hassan, 2017. "Study on the Tribological Characteristics of Australian Native First Generation and Second Generation Biodiesel Fuel," Energies, MDPI, vol. 10(1), pages 1-16, January.
    12. Chen, Tao & Hu, Run-Ze & Yao, Xiao-Hui & Yang, Qiang & Shuai, Shi-Min & Wang, Jun & Xu, Ming & Zhang, Dong-Yang & Fu, Yu-Jie & Li, Long & Zhao, Wei-Guo, 2020. "Effect of Pyrola extract on the stability of palm biodiesel upon exposure to copper," Renewable Energy, Elsevier, vol. 149(C), pages 1282-1289.
    13. Karavalakis, Georgios & Hilari, Despina & Givalou, Lida & Karonis, Dimitrios & Stournas, Stamos, 2011. "Storage stability and ageing effect of biodiesel blends treated with different antioxidants," Energy, Elsevier, vol. 36(1), pages 369-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarin, Amit & Singh, N.P. & Sarin, Rakesh & Malhotra, R.K., 2010. "Natural and synthetic antioxidants: Influence on the oxidative stability of biodiesel synthesized from non-edible oil," Energy, Elsevier, vol. 35(12), pages 4645-4648.
    2. Haseeb, A.S.M.A. & Jun, T.S. & Fazal, M.A. & Masjuki, H.H., 2011. "Degradation of physical properties of different elastomers upon exposure to palm biodiesel," Energy, Elsevier, vol. 36(3), pages 1814-1819.
    3. Coronado, Marcos & Montero, Gisela & Valdez, Benjamín & Stoytcheva, Margarita & Eliezer, Amir & García, Conrado & Campbell, Héctor & Pérez, Armando, 2014. "Degradation of nitrile rubber fuel hose by biodiesel use," Energy, Elsevier, vol. 68(C), pages 364-369.
    4. Sui, Meng & Li, Fashe, 2019. "Effect of TEPA on oxidation stability and metal ion content of biodiesel," Renewable Energy, Elsevier, vol. 143(C), pages 352-358.
    5. Meher, L.C. & Churamani, C.P. & Arif, Md. & Ahmed, Z. & Naik, S.N., 2013. "Jatropha curcas as a renewable source for bio-fuels—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 397-407.
    6. Jayed, M.H. & Masjuki, H.H. & Kalam, M.A. & Mahlia, T.M.I. & Husnawan, M. & Liaquat, A.M., 2011. "Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 220-235, January.
    7. Jakeria, M.R. & Fazal, M.A. & Haseeb, A.S.M.A., 2014. "Influence of different factors on the stability of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 154-163.
    8. Navarro-Pineda, Freddy S. & Baz-Rodríguez, Sergio A. & Handler, Robert & Sacramento-Rivero, Julio C., 2016. "Advances on the processing of Jatropha curcas towards a whole-crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 247-269.
    9. Chandran, Davannendran, 2020. "Compatibility of diesel engine materials with biodiesel fuel," Renewable Energy, Elsevier, vol. 147(P1), pages 89-99.
    10. Castro Gonzáles, Nirza Fabiola, 2016. "International experiences with the cultivation of Jatropha curcas for biodiesel production," Energy, Elsevier, vol. 112(C), pages 1245-1258.
    11. Roveda, Ana Carolina & Comin, Marina & Caires, Anderson Rodrigues Lima & Ferreira, Valdir Souza & Trindade, Magno Aparecido Gonçalves, 2016. "Thermal stability enhancement of biodiesel induced by a synergistic effect between conventional antioxidants and an alternative additive," Energy, Elsevier, vol. 109(C), pages 260-265.
    12. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    13. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    14. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    15. Shahabuddin, M. & Kalam, M.A. & Masjuki, H.H. & Bhuiya, M.M.K. & Mofijur, M., 2012. "An experimental investigation into biodiesel stability by means of oxidation and property determination," Energy, Elsevier, vol. 44(1), pages 616-622.
    16. Li, Ruizhi & Wang, Shuang & Zhang, Huicong & Li, Fashe & Sui, Meng, 2022. "Synthesis, antioxidant properties, and oil solubility of a novel ionic liquid [UIM0Y2][C6H2(OH)3COO] in biodiesel," Renewable Energy, Elsevier, vol. 197(C), pages 545-551.
    17. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2011. "Biodiesel feasibility study: An evaluation of material compatibility; performance; emission and engine durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1314-1324, February.
    18. Yaakob, Zahira & Narayanan, Binitha N. & Padikkaparambil, Silija & Unni K., Surya & Akbar P., Mohammed, 2014. "A review on the oxidation stability of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 136-153.
    19. Lamba, Bhawna Yadav & Joshi, Girdhar & Tiwari, Avanish K. & Rawat, Devendra Singh & Mallick, Sudesh, 2013. "Effect of antioxidants on physico-chemical properties of EURO-III HSD (high speed diesel) and Jatropha biodiesel blends," Energy, Elsevier, vol. 60(C), pages 222-229.
    20. Fazal, M.A. & Haseeb, A.S.M.A. & Masjuki, H.H., 2012. "Degradation of automotive materials in palm biodiesel," Energy, Elsevier, vol. 40(1), pages 76-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2333-2337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.