IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i5p2022-2032.html
   My bibliography  Save this article

Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model

Author

Listed:
  • Xia, L.
  • Zhang, P.
  • Wang, R.Z.

Abstract

Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.

Suggested Citation

  • Xia, L. & Zhang, P. & Wang, R.Z., 2010. "Numerical heat transfer analysis of the packed bed latent heat storage system based on an effective packed bed model," Energy, Elsevier, vol. 35(5), pages 2022-2032.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2022-2032
    DOI: 10.1016/j.energy.2010.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544210000204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2010.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
    2. Felix Regin, A. & Solanki, S.C. & Saini, J.S., 2009. "An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation," Renewable Energy, Elsevier, vol. 34(7), pages 1765-1773.
    3. Medina, Mario A. & King, Jennifer B. & Zhang, Meng, 2008. "On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs)," Energy, Elsevier, vol. 33(4), pages 667-678.
    4. Alawadhi, Esam M., 2008. "Numerical analysis of a cool-thermal storage system with a thermal conductivity enhancer operating under a freezing condition," Energy, Elsevier, vol. 33(5), pages 796-803.
    5. Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
    6. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ELSihy, ELSaeed Saad & Mokhtar, Omar & Xu, Chao & Du, Xiaoze & Adel, Mohamed, 2023. "Cyclic performance characterization of a high-temperature thermal energy storage system packed with rock/slag pebbles granules combined with encapsulated phase change materials," Applied Energy, Elsevier, vol. 331(C).
    2. Wang, Wei & He, Xibo & Hou, Yicheng & Qiu, Jun & Han, Dongmei & Shuai, Yong, 2021. "Thermal performance analysis of packed-bed thermal energy storage with radial gradient arrangement for phase change materials," Renewable Energy, Elsevier, vol. 173(C), pages 768-780.
    3. Li, C. & Wang, R.Z., 2012. "Building integrated energy storage opportunities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6191-6211.
    4. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    5. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    6. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    7. Mao, Qianjun & Cao, Wenlong, 2023. "Effect of variable capsule size on energy storage performances in a high-temperature three-layered packed bed system," Energy, Elsevier, vol. 273(C).
    8. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    9. Han, Pengju & Lu, Lixin & Qiu, Xiaolin & Tang, Yali & Wang, Jun, 2015. "Preparation and characterization of macrocapsules containing microencapsulated PCMs (phase change materials) for thermal energy storage," Energy, Elsevier, vol. 91(C), pages 531-539.
    10. Waqas, Adeel & Ud Din, Zia, 2013. "Phase change material (PCM) storage for free cooling of buildings—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 607-625.
    11. Huiqian Guo & ELSaeed Saad ELSihy & Zhirong Liao & Xiaoze Du, 2021. "A Comparative Study on the Performance of Single and Multi-Layer Encapsulated Phase Change Material Packed-Bed Thermocline Tanks," Energies, MDPI, vol. 14(8), pages 1-24, April.
    12. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    13. Mao, Qianjun & Zhang, Yamei, 2020. "Thermal energy storage performance of a three-PCM cascade tank in a high-temperature packed bed system," Renewable Energy, Elsevier, vol. 152(C), pages 110-119.
    14. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    15. Li, Ming-Jia & Jin, Bo & Ma, Zhao & Yuan, Fan, 2018. "Experimental and numerical study on the performance of a new high-temperature packed-bed thermal energy storage system with macroencapsulation of molten salt phase change material," Applied Energy, Elsevier, vol. 221(C), pages 1-15.
    16. Pakrouh, R. & Hosseini, M.J. & Ranjbar, A.A. & Bahrampoury, R., 2017. "Thermodynamic analysis of a packed bed latent heat thermal storage system simulated by an effective packed bed model," Energy, Elsevier, vol. 140(P1), pages 861-878.
    17. Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
    18. Izquierdo-Barrientos, M.A. & Sobrino, C. & Almendros-Ibáñez, J.A. & Barreneche, C. & Ellis, N. & Cabeza, L.F., 2016. "Characterization of granular phase change materials for thermal energy storage applications in fluidized beds," Applied Energy, Elsevier, vol. 181(C), pages 310-321.
    19. Zhang, Lei & Zhu, Jiaoqun & Zhou, Weibing & Wang, Jun & Wang, Yan, 2012. "Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials," Energy, Elsevier, vol. 39(1), pages 294-302.
    20. Xie, Baoshan & Baudin, Nicolas & Soto, Jérôme & Fan, Yilin & Luo, Lingai, 2022. "Wall impact on efficiency of packed-bed thermocline thermal energy storage system," Energy, Elsevier, vol. 247(C).
    21. Al-abidi, Abduljalil A. & Bin Mat, Sohif & Sopian, K. & Sulaiman, M.Y. & Mohammed, Abdulrahman Th., 2013. "CFD applications for latent heat thermal energy storage: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 353-363.
    22. Amin, N.A.M. & Belusko, M. & Bruno, F., 2014. "An effectiveness-NTU model of a packed bed PCM thermal storage system," Applied Energy, Elsevier, vol. 134(C), pages 356-362.
    23. Wang, Wei & Shuai, Yong & Qiu, Jun & He, Xibo & Hou, Yicheng, 2022. "Effect of steady-state and unstable-state inlet boundary on the thermal performance of packed-bed latent heat storage system integrated with concentrating solar collectors," Renewable Energy, Elsevier, vol. 183(C), pages 251-266.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Wu, Ming & Xu, Chao & He, Ya-Ling, 2014. "Dynamic thermal performance analysis of a molten-salt packed-bed thermal energy storage system using PCM capsules," Applied Energy, Elsevier, vol. 121(C), pages 184-195.
    3. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    4. de Gracia, Alvaro & Cabeza, Luisa F., 2017. "Numerical simulation of a PCM packed bed system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1055-1063.
    5. Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
    6. Jeroen Mol & Mina Shahi & Amirhoushang Mahmoudi, 2020. "Numerical Modeling of Thermal Storage Performance of Encapsulated PCM Particles in an Unstructured Packed Bed," Energies, MDPI, vol. 13(23), pages 1-16, December.
    7. Nithyanandam, K. & Pitchumani, R. & Mathur, A., 2014. "Analysis of a latent thermocline storage system with encapsulated phase change materials for concentrating solar power," Applied Energy, Elsevier, vol. 113(C), pages 1446-1460.
    8. Bose, Prabhu & Amirtham, Valan Arasu, 2016. "A review on thermal conductivity enhancement of paraffinwax as latent heat energy storage material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 81-100.
    9. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    10. Afshan, Mahboob E. & Selvakumar, A.S & Velraj, R. & Rajaraman, R., 2020. "Effect of aspect ratio and dispersed PCM balls on the charging performance of a latent heat thermal storage unit for solar thermal applications," Renewable Energy, Elsevier, vol. 148(C), pages 876-888.
    11. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    12. Xu, Ben & Li, Peiwen & Chan, Cholik & Tumilowicz, Eric, 2015. "General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant," Applied Energy, Elsevier, vol. 140(C), pages 256-268.
    13. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    14. Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
    15. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    16. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    17. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    18. Walid Aich & Fatih Selimefendigil & Talal Alqahtani & Salem Algarni & Sultan Alshehery & Lioua Kolsi, 2022. "Thermal and Phase Change Process in a Locally Curved Open Channel Equipped with PCM-PB and Heater during Nanofluid Convection under Magnetic Field," Mathematics, MDPI, vol. 10(21), pages 1-19, November.
    19. O’Connor, William E. & Warzoha, Ronald & Weigand, Rebecca & Fleischer, Amy S. & Wemhoff, Aaron P., 2014. "Thermal property prediction and measurement of organic phase change materials in the liquid phase near the melting point," Applied Energy, Elsevier, vol. 132(C), pages 496-506.
    20. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:5:p:2022-2032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.