IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i2p134-143.html
   My bibliography  Save this article

An analysis of the legal and market framework for the cogeneration sector in Croatia

Author

Listed:
  • Lončar, D.
  • Duić, N.
  • Bogdan, Ž.

Abstract

Following a strategic orientation towards sustainable development, the Government of the Republic of Croatia has changed its energy legislation and has put forward a framework for the systematic development and increased use of renewable energy sources and cogeneration. This paper focuses on changes in the regulatory context relevant to the cogeneration sector and also analyses the impact of energy market transition on cogeneration viability in municipal district heating, industry, services and the residential sector. Particular attention has been paid to the expected changes of heat, electricity and gas prices. We present a simple model for quantitative prediction of the cogeneration system profitability at different power levels under given national circumstances. Our findings support a need for a strong institutional support for initial penetration of the micro-cogeneration technologies into the Croatian energy system.

Suggested Citation

  • Lončar, D. & Duić, N. & Bogdan, Ž., 2009. "An analysis of the legal and market framework for the cogeneration sector in Croatia," Energy, Elsevier, vol. 34(2), pages 134-143.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:2:p:134-143
    DOI: 10.1016/j.energy.2008.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208002971
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, Henrik & Hvelplund, Frede & Kass, Ilmars & Dukalskis, Edgars & Blumberga, Dagnija, 1999. "District heating and market economy in Latvia," Energy, Elsevier, vol. 24(7), pages 549-559.
    2. Lund, Henrik & Munster, Ebbe, 2006. "Integrated energy systems and local energy markets," Energy Policy, Elsevier, vol. 34(10), pages 1152-1160, July.
    3. Lipošćak, Marko & Afgan, Naim H. & Duić, Neven & da Graça Carvalho, Maria, 2006. "Sustainability assessment of cogeneration sector development in Croatia," Energy, Elsevier, vol. 31(13), pages 2276-2284.
    4. Bogdan, Željko & Kopjar, Damir, 2006. "Improvement of the cogeneration plant economy by using heat accumulator," Energy, Elsevier, vol. 31(13), pages 2285-2292.
    5. Al-Mansour, Fouad & Kožuh, Mitja, 2007. "Risk analysis for CHP decision making within the conditions of an open electricity market," Energy, Elsevier, vol. 32(10), pages 1905-1916.
    6. Lund, H. & Hvelplund, F. & Nunthavorakarn, S., 2003. "Feasibility of a 1400 MW coal-fired power-plant in Thailand," Applied Energy, Elsevier, vol. 76(1-3), pages 55-64, September.
    7. Onovwiona, H.I. & Ugursal, V.I., 2006. "Residential cogeneration systems: review of the current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(5), pages 389-431, October.
    8. Verbruggen, Aviel, 2007. "What's Needed Next to Refine the EU Directive on Cogeneration Regulation," The Electricity Journal, Elsevier, vol. 20(2), pages 63-70, March.
    9. Lund, Henrik & Hvelplund, Frede & Ingermann, Karl & Kask, Ulo, 2000. "Estonian energy system Proposals for the implementation of a cogeneration strategy," Energy Policy, Elsevier, vol. 28(10), pages 729-736, August.
    10. Ben Maalla, El Mehdi & Kunsch, Pierre L., 2008. "Simulation of micro-CHP diffusion by means of System Dynamics," Energy Policy, Elsevier, vol. 36(7), pages 2308-2319, July.
    11. Cardona, E. & Piacentino, A., 2005. "Cogeneration: a regulatory framework toward growth," Energy Policy, Elsevier, vol. 33(16), pages 2100-2111, November.
    12. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiménez-Espadafor Aguilar, Francisco & García, Miguel Torres & Trujillo, Elisa Carvajal & Becerra Villanueva, José Antonio & Florencio Ojeda, Francisco J., 2011. "Prediction of performance, energy savings and increase in profitability of two gas turbine steam generator cogeneration plant, based on experimental data," Energy, Elsevier, vol. 36(2), pages 742-754.
    2. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    3. repec:cmj:networ:y:2013:i:1:p:67-73 is not listed on IDEAS
    4. Ceglia, F. & Marrasso, E. & Pallotta, G. & Roselli, C. & Sasso, M., 2023. "Assessing the influence of time-dependent power grid efficiency indicators on primary energy savings and economic incentives for high-efficiency cogeneration," Energy, Elsevier, vol. 278(PB).
    5. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    6. Karasalihović Sedlar, Daria & Hrnčević, Lidia & Dekanić, Igor, 2011. "Recommendations for implementation of energy strategy of the Republic of Croatia," Energy, Elsevier, vol. 36(7), pages 4191-4206.
    7. Lončar, D. & Ridjan, I., 2012. "Medium term development prospects of cogeneration district heating systems in transition country – Croatian case," Energy, Elsevier, vol. 48(1), pages 32-39.
    8. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    9. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    10. Comodi, Gabriele & Rossi, Mosè, 2016. "Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency," Energy, Elsevier, vol. 109(C), pages 124-136.
    11. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    12. Ćosić, Boris & Stanić, Zoran & Duić, Neven, 2011. "Geographic distribution of economic potential of agricultural and forest biomass residual for energy use: Case study Croatia," Energy, Elsevier, vol. 36(4), pages 2017-2028.
    13. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    14. Čulig-Tokić, Dario & Krajačić, Goran & Doračić, Borna & Mathiesen, Brian Vad & Krklec, Robert & Larsen, Jesper Møller, 2015. "Comparative analysis of the district heating systems of two towns in Croatia and Denmark," Energy, Elsevier, vol. 92(P3), pages 435-443.
    15. Cullen, Barry & McGovern, Jim, 2010. "Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine," Energy, Elsevier, vol. 35(2), pages 1017-1023.
    16. Turan, Onder & Aydin, Hakan, 2014. "Exergetic and exergo-economic analyses of an aero-derivative gas turbine engine," Energy, Elsevier, vol. 74(C), pages 638-650.
    17. Radulovic, Dusko & Skok, Srdjan & Kirincic, Vedran, 2012. "Cogeneration – Investment dilemma," Energy, Elsevier, vol. 48(1), pages 177-187.
    18. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    19. Rada Cristina IRIMIE, 2013. "An Overview And Analysis Of Energy Challenges In The Republic Of Croatia," Network Intelligence Studies, Romanian Foundation for Business Intelligence, Editorial Department, issue 1, pages 54-60, July.
    20. Kavvadias, K.C., 2016. "Energy price spread as a driving force for combined generation investments: A view on Europe," Energy, Elsevier, vol. 115(P3), pages 1632-1639.
    21. Cvetinović, Dejan & Stefanović, Predrag & Marković, Zoran & Bakić, Vukman & Turanjanin, Valentina & Jovanović, Marina & Vučićević, Biljana, 2013. "GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia," Energy, Elsevier, vol. 57(C), pages 788-795.
    22. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.
    23. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lund, Henrik & Duić, Neven & Krajac˘ić, Goran & Graça Carvalho, Maria da, 2007. "Two energy system analysis models: A comparison of methodologies and results," Energy, Elsevier, vol. 32(6), pages 948-954.
    2. Franki, Vladimir & Višković, Alfredo, 2015. "Energy security, policy and technology in South East Europe: Presenting and applying an energy security index to Croatia," Energy, Elsevier, vol. 90(P1), pages 494-507.
    3. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    4. Lund, Henrik & Münster, Ebbe, 2006. "Integrated transportation and energy sector CO2 emission control strategies," Transport Policy, Elsevier, vol. 13(5), pages 426-433, September.
    5. Lund, Henrik & Hvelplund, Frede, 2012. "The economic crisis and sustainable development: The design of job creation strategies by use of concrete institutional economics," Energy, Elsevier, vol. 43(1), pages 192-200.
    6. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    7. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    8. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    9. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhang, Xu-Tao & Shi, Guo-Hua, 2008. "Integrated evaluation of distributed triple-generation systems using improved grey incidence approach," Energy, Elsevier, vol. 33(9), pages 1427-1437.
    10. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    11. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2011. "Industrial combined heat and power (CHP) planning: Development of a methodology and application in Greece," Applied Energy, Elsevier, vol. 88(5), pages 1519-1531, May.
    12. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    13. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    14. Lund, Henrik & Clark II, Woodrow W., 2008. "Sustainable energy and transportation systems introduction and overview," Utilities Policy, Elsevier, vol. 16(2), pages 59-62, June.
    15. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Lai, Sau Man & Hui, Chi Wai, 2009. "Feasibility and flexibility for a trigeneration system," Energy, Elsevier, vol. 34(10), pages 1693-1704.
    17. Streckiene, Giedre & Martinaitis, Vytautas & Andersen, Anders N. & Katz, Jonas, 2009. "Feasibility of CHP-plants with thermal stores in the German spot market," Applied Energy, Elsevier, vol. 86(11), pages 2308-2316, November.
    18. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    19. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    20. Collins, Ross D. & Crowther, Kenneth G., 2011. "Systems-based modeling of generation variability under alternate geographic configurations of photovoltaic (PV) installations in Virginia," Energy Policy, Elsevier, vol. 39(10), pages 6262-6270, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:2:p:134-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.