IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i11p1955-1962.html
   My bibliography  Save this article

Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source

Author

Listed:
  • Wu, J.Y.
  • Li, S.

Abstract

The fluctuation of heat source influences the performance of adsorption cooling systems greatly in practical applications. This paper mainly investigates the cyclic characteristics of silica gel–water adsorption cooling system under the condition of general variable heat source, in order to explore the system characteristics and access the related operation strategies. In this work, all practical variable heat sources are regarded as the combination of two different changes: the slow time-varying change (long change) and the fast time-varying change (short change). Based on a transient model of adsorption chiller verified by experiments, the characteristics of adsorption cooling system under both the two types of changes are presented. With the slow time-varying change, the heat source variation rate is a key factor that influences the system performance greatly. And for the fast time-varying change, concentration is being focused on the influence on chiller desorption process. The methods to minimize this effect, such as to change desorption time, is discussed. Moreover, the water tank capacity plays a very important role under both slow time-varying and fast time-varying heat sources. The analysis in this work will eventually contribute to operation strategies under different conditions and methods to decrease the influence of heat source fluctuation.

Suggested Citation

  • Wu, J.Y. & Li, S., 2009. "Study on cyclic characteristics of silica gel–water adsorption cooling system driven by variable heat source," Energy, Elsevier, vol. 34(11), pages 1955-1962.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1955-1962
    DOI: 10.1016/j.energy.2009.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tangkengsirisin, Vichan & Kanzawa, Atsushi & Watanabe, Takayuki, 1998. "A solar-powered adsorption cooling system using a silica gel–water mixture," Energy, Elsevier, vol. 23(5), pages 347-353.
    2. Li, S. & Wu, J.Y., 2009. "Theoretical research of a silica gel-water adsorption chiller in a micro combined cooling, heating and power (CCHP) system," Applied Energy, Elsevier, vol. 86(6), pages 958-967, June.
    3. Cui, Qun & Tao, Gang & Chen, Haijun & Guo, Xinyue & Yao, Huqing, 2005. "Environmentally benign working pairs for adsorption refrigeration," Energy, Elsevier, vol. 30(2), pages 261-271.
    4. Alam, K.C.A. & Akahira, A. & Hamamoto, Y. & Akisawa, A. & Kashiwagi, T., 2004. "A four-bed mass recovery adsorption refrigeration cycle driven by low temperature waste/renewable heat source," Renewable Energy, Elsevier, vol. 29(9), pages 1461-1475.
    5. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    6. Saha, B.B & Akisawa, A & Kashiwagi, T, 2001. "Solar/waste heat driven two-stage adsorption chiller: the prototype," Renewable Energy, Elsevier, vol. 23(1), pages 93-101.
    7. Dai, Y.J. & Sumathy, K., 2003. "Heat and mass transfer in the adsorbent of a solar adsorption cooling system with glass tube insulation," Energy, Elsevier, vol. 28(14), pages 1511-1527.
    8. Le Pierrès, Nolwenn & Mazet, Nathalie & Stitou, Driss, 2007. "Modelling and performances of a deep-freezing process using low-grade solar heat," Energy, Elsevier, vol. 32(2), pages 154-164.
    9. Papadopoulos, A. M. & Oxizidis, S. & Kyriakis, N., 2003. "Perspectives of solar cooling in view of the developments in the air-conditioning sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 419-438, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
    2. Wu, J.Y. & Wang, J.L. & Li, S. & Wang, R.Z., 2014. "Experimental and simulative investigation of a micro-CCHP (micro combined cooling, heating and power) system with thermal management controller," Energy, Elsevier, vol. 68(C), pages 444-453.
    3. Santori, Giulio & Sapienza, Alessio & Freni, Angelo, 2012. "A dynamic multi-level model for adsorptive solar cooling," Renewable Energy, Elsevier, vol. 43(C), pages 301-312.
    4. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    5. Anand, S. & Gupta, A. & Tyagi, S.K., 2015. "Solar cooling systems for climate change mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 143-161.
    6. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    7. Alawadhi, Esam M., 2011. "Cooling process of water in a horizontal circular enclosure subjected to non-uniform boundary conditions," Energy, Elsevier, vol. 36(1), pages 586-594.
    8. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    9. Hamed, Ahmed M. & Abd El Rahman, Walaa R. & El-Emam, S.H., 2010. "Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed," Energy, Elsevier, vol. 35(6), pages 2468-2483.
    10. Haghighi, A.P. & Pakdel, S.H. & Jafari, A., 2016. "A study of a wind catcher assisted adsorption cooling channel for natural cooling of a 2-storey building," Energy, Elsevier, vol. 102(C), pages 118-138.
    11. Verde, M. & Harby, K. & de Boer, Robert & Corberán, José M., 2016. "Performance evaluation of a waste-heat driven adsorption system for automotive air-conditioning: Part II - Performance optimization under different real driving conditions," Energy, Elsevier, vol. 115(P1), pages 996-1009.
    12. Zhong, Yongfang & Fang, Tiegang & Wert, Kevin L., 2011. "An adsorption air conditioning system to integrate with the recent development of emission control for heavy-duty vehicles," Energy, Elsevier, vol. 36(7), pages 4125-4135.
    13. Gordeeva, Larisa G. & Aristov, Yuriy I., 2011. "Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization," Energy, Elsevier, vol. 36(2), pages 1273-1279.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Habib, Khairul & Choudhury, Biplab & Chatterjee, Pradip Kumar & Saha, Bidyut Baran, 2013. "Study on a solar heat driven dual-mode adsorption chiller," Energy, Elsevier, vol. 63(C), pages 133-141.
    2. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    3. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    4. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar-powered closed physisorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2516-2538.
    5. Sapienza, Alessio & Santamaria, Salvatore & Frazzica, Andrea & Freni, Angelo, 2011. "Influence of the management strategy and operating conditions on the performance of an adsorption chiller," Energy, Elsevier, vol. 36(9), pages 5532-5538.
    6. Li, Ang & Ismail, Azhar Bin & Thu, Kyaw & Ng, Kim Choon & Loh, Wai Soong, 2014. "Performance evaluation of a zeolite–water adsorption chiller with entropy analysis of thermodynamic insight," Applied Energy, Elsevier, vol. 130(C), pages 702-711.
    7. Hassan, H.Z. & Mohamad, A.A. & Alyousef, Y. & Al-Ansary, H.A., 2015. "A review on the equations of state for the working pairs used in adsorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 600-609.
    8. Hassan, H.Z. & Mohamad, A.A. & Bennacer, R., 2011. "Simulation of an adsorption solar cooling system," Energy, Elsevier, vol. 36(1), pages 530-537.
    9. Solmus, Ismail & YamalI, Cemil & Kaftanoglu, Bilgin & Baker, Derek & Çaglar, Ahmet, 2010. "Adsorption properties of a natural zeolite-water pair for use in adsorption cooling cycles," Applied Energy, Elsevier, vol. 87(6), pages 2062-2067, June.
    10. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    11. Mahesh, A., 2017. "Solar collectors and adsorption materials aspects of cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1300-1312.
    12. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    13. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    14. Sah, Ramesh P. & Choudhury, Biplab & Das, Ranadip K., 2015. "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 123-134.
    15. Zhao, Yongling & Hu, Eric & Blazewicz, Antoni, 2012. "Dynamic modelling of an activated carbon–methanol adsorption refrigeration tube with considerations of interfacial convection and transient pressure process," Applied Energy, Elsevier, vol. 95(C), pages 276-284.
    16. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    17. Qian, Suxin & Gluesenkamp, Kyle & Hwang, Yunho & Radermacher, Reinhard & Chun, Ho-Hwan, 2013. "Cyclic steady state performance of adsorption chiller with low regeneration temperature zeolite," Energy, Elsevier, vol. 60(C), pages 517-526.
    18. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    19. Gulshan Khatun, 2019. "Performance Evaluation on Mass Recovery Three-Bed Adsorption Chiller," International Journal of Sciences, Office ijSciences, vol. 8(12), pages 9-14, December.
    20. Lu, Z.S. & Wang, R.Z. & Xia, Z.Z. & Lu, X.R. & Yang, C.B. & Ma, Y.C. & Ma, G.B., 2013. "Study of a novel solar adsorption cooling system and a solar absorption cooling system with new CPC collectors," Renewable Energy, Elsevier, vol. 50(C), pages 299-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:11:p:1955-1962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.