IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i5p776-784.html
   My bibliography  Save this article

Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution

Author

Listed:
  • Kodama, Satoshi
  • Nishimoto, Taiki
  • Yamamoto, Naoki
  • Yogo, Katsunori
  • Yamada, Koichi

Abstract

A new CO2 mineral sequestration process using the pH swing of a weak base–strong acid solution was proposed. In this process, an alkaline-earth metal was extracted selectively from silicate waste material, such as steelmaking slag or waste concrete, in an acidic condition using a weak base–strong acid solution. The reacted solution containing alkaline-earth metal ions and a weak-base, behaves as a CO2 absorbent. The acidic extraction solution was regenerated from the basic absorbent solution by precipitating the alkaline-earth metal with CO2 as the carbonate. The thermodynamic analysis of this process shows that a series of reactions proceeds spontaneously and the overall reaction is exothermic. The feasibility of the proposed process was confirmed using steelmaking slag as a silicate material and ammonium chloride solution as a weak base–strong acid solution. It was confirmed that this series of reaction proceeds successfully under mild conditions. Calcium ions were extracted selectively from steelmaking slag using an ammonium chloride solution, and the reacted solution absorbed CO2 followed by the precipitation of CaCO3 at 80°C. On the basis of these experimental analyses, the energy consumption of the proposed process was roughly estimated as 300kWh/ton-CO2.

Suggested Citation

  • Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:5:p:776-784
    DOI: 10.1016/j.energy.2008.01.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208000273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.01.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lackner, Klaus S. & Wendt, Christopher H. & Butt, Darryl P. & Joyce, Edward L. & Sharp, David H., 1995. "Carbon dioxide disposal in carbonate minerals," Energy, Elsevier, vol. 20(11), pages 1153-1170.
    2. Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
    2. Yafei Zhao & Ken-ichi Itakura, 2023. "A State-of-the-Art Review on Technology for Carbon Utilization and Storage," Energies, MDPI, vol. 16(10), pages 1-22, May.
    3. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    4. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    5. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    6. Xie, Heping & Gao, Xiaolin & Liu, Tao & Chen, Bin & Wu, Yifan & Jiang, Wenchuan, 2020. "Electricity generation by a novel CO2 mineralization cell based on organic proton-coupled electron transfer," Applied Energy, Elsevier, vol. 261(C).
    7. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    8. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    9. Aya A-H. I. Mourad & Ameera F. Mohammad & Ali H. Al-Marzouqi & Muftah H. El-Naas & Mohamed H. Al-Marzouqi & Mohammednoor Altarawneh, 2021. "KOH-Based Modified Solvay Process for Removing Na Ions from High Salinity Reject Brine at High Temperatures," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    10. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    11. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    12. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    13. Giulia Costa & Alessandra Polettini & Raffaella Pomi & Alessio Stramazzo & Daniela Zingaretti, 2017. "Energetic assessment of CO 2 sequestration through slurry carbonation of steel slag: a factorial study," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(3), pages 530-541, June.
    14. Jo, Hoyong & Lee, Min-Gu & Park, Jinwon & Jung, Kwang-Deog, 2017. "Preparation of high-purity nano-CaCO3 from steel slag," Energy, Elsevier, vol. 120(C), pages 884-894.
    15. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    16. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    17. Lei Wang & Yuemei Tang & Yu Gong & Xiang Shao & Xiaochen Lin & Weili Xu & Yifan Zhu & Yongming Ju & Lili Shi & Dorota Kołodyńska, 2023. "Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    18. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    2. Kakizawa, M. & Yamasaki, A. & Yanagisawa, Y., 2001. "A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid," Energy, Elsevier, vol. 26(4), pages 341-354.
    3. Wang, Xiaolong & Maroto-Valer, M. Mercedes, 2013. "Optimization of carbon dioxide capture and storage with mineralisation using recyclable ammonium salts," Energy, Elsevier, vol. 51(C), pages 431-438.
    4. Ioannis Rigopoulos & Michalis A. Vasiliades & Klito C. Petallidou & Ioannis Ioannou & Angelos M. Efstathiou & Theodora Kyratsi, 2015. "A method to enhance the CO 2 storage capacity of pyroxenitic rocks," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(5), pages 577-591, October.
    5. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    6. Lombardi, Lidia & Carnevale, Ennio, 2013. "Economic evaluations of an innovative biogas upgrading method with CO2 storage," Energy, Elsevier, vol. 62(C), pages 88-94.
    7. Puthiya Veetil, Sanoop Kumar & Rebane, Kaarel & Yörük, Can Rüstü & Lopp, Margus & Trikkel, Andres & Hitch, Michael, 2021. "Aqueous mineral carbonation of oil shale mine waste (limestone): A feasibility study to develop a CO2 capture sorbent," Energy, Elsevier, vol. 221(C).
    8. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    9. Klaus Keller & Zili Yang & Matt Hall & David F. Bradford, 2003. "Carbon Dioxide Sequestrian: When And How Much?," Working Papers 108, Princeton University, Department of Economics, Center for Economic Policy Studies..
    10. Raza, Waseem & Raza, Nadeem & Agbe, Henry & Kumar, R.V. & Kim, Ki-Hyun & Yang, Jianhua, 2018. "Multistep sequestration and storage of CO2 to form valuable products using forsterite," Energy, Elsevier, vol. 155(C), pages 865-873.
    11. Sina Hoseinpoori & David Pallarès & Filip Johnsson & Henrik Thunman, 2023. "A comparative exergy-based assessment of direct air capture technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(7), pages 1-20, October.
    12. Dea Hyun Moon & Jun Eu & Wonhee Lee & Young Eun Kim & Ki Tae Park & You Na Ko & Soon Kwan Jeong & Min Hye Youn, 2020. "Comparison of reactions with different calcium sources for CaCO3 production using carbonic anhydrase," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 898-906, October.
    13. Arcusa, Stephanie & Sprenkle-Hyppolite, Starry, 2022. "Snapshot of the Carbon Sequestration Certification Market Ecosystem," OSF Preprints fu59w, Center for Open Science.
    14. Mihee Lim & Gi-Chun Han & Ji-Whan Ahn & Kwang-Suk You, 2010. "Environmental Remediation and Conversion of Carbon Dioxide (CO 2 ) into Useful Green Products by Accelerated Carbonation Technology," IJERPH, MDPI, vol. 7(1), pages 1-26, January.
    15. Eloneva, Sanni & Teir, Sebastian & Salminen, Justin & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2008. "Fixation of CO2 by carbonating calcium derived from blast furnace slag," Energy, Elsevier, vol. 33(9), pages 1461-1467.
    16. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.
    17. repec:pri:cepsud:94bradford is not listed on IDEAS
    18. Xiaolong Wang & Aimaro Sanna & M. Mercedes Maroto‐Valer & Tom Paulson, 2015. "Carbon dioxide capture and storage by pH swing mineralization using recyclable ammonium salts and flue gas mixtures," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(4), pages 389-402, August.
    19. Teir, Sebastian & Eloneva, Sanni & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2007. "Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production," Energy, Elsevier, vol. 32(4), pages 528-539.
    20. Fatima Haque & Yi Wai Chiang & Rafael M. Santos, 2019. "Alkaline Mineral Soil Amendment: A Climate Change ‘Stabilization Wedge’?," Energies, MDPI, vol. 12(12), pages 1-17, June.
    21. Rigopoulos, Ioannis & Török, Ákos & Kyratsi, Theodora & Delimitis, Andreas & Ioannou, Ioannis, 2018. "Sustainable exploitation of mafic rock quarry waste for carbon sequestration following ball milling," Resources Policy, Elsevier, vol. 59(C), pages 24-32.

    More about this item

    Keywords

    CO2; Mineral carbonation; PH swing; Steelmaking slag;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:5:p:776-784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.