IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v32y2007i1p51-58.html
   My bibliography  Save this article

Modeling of a space heating and cooling system with seasonal energy storage

Author

Listed:
  • Zhang, H.-F.
  • Ge, X.-S.
  • Ye, H.

Abstract

A model of space heating and cooling system, in which a surface water pond with an insulating cover serves as the heat source in the winter and heat sink in the summer, is presented. Based on the heat load of the building, the vapor compression heat pump cycle and the seasonal energy storage of the water pond, the performance of the system is obtained. The total compressor work year round, as well as the coefficient of performance (COP) of heat supply in the winter and refrigeration in the summer, is investigated in order to give a full review of the proposed model. The design parameters, including the thickness of the insulating cover and the volume of the pond water and the type of soil are analyzed. The results show that the proposed system can run well for various soil types, provided the thickness of the insulating cover is properly designed. To analyze the interaction of the seasonal heat charge and discharge, three running modes are discussed. The proposed mode can save about 16% compressor work, compared with the modes which run for heat supply and refrigeration individually.

Suggested Citation

  • Zhang, H.-F. & Ge, X.-S. & Ye, H., 2007. "Modeling of a space heating and cooling system with seasonal energy storage," Energy, Elsevier, vol. 32(1), pages 51-58.
  • Handle: RePEc:eee:energy:v:32:y:2007:i:1:p:51-58
    DOI: 10.1016/j.energy.2006.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544206000508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2006.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindenberger, D & Bruckner, T & Groscurth, H.-M & Kümmel, R, 2000. "Optimization of solar district heating systems: seasonal storage, heat pumps, and cogeneration," Energy, Elsevier, vol. 25(7), pages 591-608.
    2. Yumrutaş, R. & Ünsal, M., 2000. "Analysis of solar aided heat pump systems with seasonal thermal energy storage in surface tanks," Energy, Elsevier, vol. 25(12), pages 1231-1243.
    3. Büyükalaca, O. & Ekinci, F. & Yılmaz, T., 2003. "Experimental investigation of Seyhan River and dam lake as heat source–sink for a heat pump," Energy, Elsevier, vol. 28(2), pages 157-169.
    4. Yumrutaş, R & Ünsal, M, 2000. "A computational model of a heat pump system with a hemispherical surface tank as the ground heat source," Energy, Elsevier, vol. 25(4), pages 371-388.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    2. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    3. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.
    4. Jing, Z.X. & Jiang, X.S. & Wu, Q.H. & Tang, W.H. & Hua, B., 2014. "Modelling and optimal operation of a small-scale integrated energy based district heating and cooling system," Energy, Elsevier, vol. 73(C), pages 399-415.
    5. Simone Mancin & Marco Noro, 2020. "Reversible Heat Pump Coupled with Ground Ice Storage for Annual Air Conditioning: An Energy Analysis," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
    7. Khairulnadzmi Jamaluddin & Sharifah Rafidah Wan Alwi & Zainuddin Abdul Manan & Khaidzir Hamzah & Jiří Jaromír Klemeš, 2019. "A Process Integration Method for Total Site Cooling, Heating and Power Optimisation with Trigeneration Systems," Energies, MDPI, vol. 12(6), pages 1-34, March.
    8. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    9. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    10. Chicco, Gianfranco & Mancarella, Pierluigi, 2008. "Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: Models and indicators," Energy, Elsevier, vol. 33(3), pages 410-417.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szczęśniak, Arkadiusz & Milewski, Jarosław & Dybiński, Olaf & Futyma, Kamil & Skibiński, Jakub & Martsinchyk, Aliaksandr, 2023. "Dynamic simulation of a four tank 200 m3 seasonal thermal energy storage system oriented to air conditioning at a dietary supplements factory," Energy, Elsevier, vol. 264(C).
    2. Kaşka, Ö. & Yumrutaş, R., 2008. "Comparison of experimental and theoretical results for the transient heat flow through multilayer walls and flat roofs," Energy, Elsevier, vol. 33(12), pages 1816-1823.
    3. Ucar, A. & Inalli, M., 2005. "Thermal and economical analysis of a central solar heating system with underground seasonal storage in Turkey," Renewable Energy, Elsevier, vol. 30(7), pages 1005-1019.
    4. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    5. Kurpaska, S. & Latala, H., 2010. "Energy analysis of heat surplus storage systems in plastic tunnels," Renewable Energy, Elsevier, vol. 35(12), pages 2656-2665.
    6. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    8. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    9. Serra, Luis M. & Lozano, Miguel-Angel & Ramos, Jose & Ensinas, Adriano V. & Nebra, Silvia A., 2009. "Polygeneration and efficient use of natural resources," Energy, Elsevier, vol. 34(5), pages 575-586.
    10. Lindenberger, Dietmar & Kuemmel, Rainer, 2011. "Energy and the State of Nations," EWI Working Papers 2011-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    11. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    12. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    13. Wu, Wei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2014. "Absorption heating technologies: A review and perspective," Applied Energy, Elsevier, vol. 130(C), pages 51-71.
    14. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    15. Wang, Huajun & Qi, Chengying & Wang, Enyu & Zhao, Jun, 2009. "A case study of underground thermal storage in a solar-ground coupled heat pump system for residential buildings," Renewable Energy, Elsevier, vol. 34(1), pages 307-314.
    16. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    17. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    18. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    19. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    20. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W., 2014. "Performance investigation of a solar heating system with underground seasonal energy storage for greenhouse application," Energy, Elsevier, vol. 67(C), pages 63-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:32:y:2007:i:1:p:51-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.