IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223019667.html
   My bibliography  Save this article

Improved solid radiation model for thermal response in large crude oil tanks

Author

Listed:
  • Yang, Jianfeng
  • Zhang, Bo
  • Chen, Liangchao
  • Diao, Xu
  • Hu, Yuanhao
  • Suo, Guanyu
  • Li, Ru
  • Wang, Qianlin
  • Li, Jinghai
  • Zhang, Jianwen
  • Dou, Zhan

Abstract

In a crude oil tank farm, a fire in a large crude oil storage tank can spread to its neighbouring tanks due to thermal radiation causing wall rupture. To better understand the thermal radiation of tank fires and the thermal response of their neighbouring tanks, a semi-empirical radiation model is proposed in this paper. The model takes into account the smoke generation and its effect in reducing thermal radiation, as well as the variation of flame temperature and emissivity along the flame axis. Compared with existing models, the model is able to predict the radiant heat flux of the flame more accurately, and this advantage becomes more pronounced as the diameter of the pool fire increases.

Suggested Citation

  • Yang, Jianfeng & Zhang, Bo & Chen, Liangchao & Diao, Xu & Hu, Yuanhao & Suo, Guanyu & Li, Ru & Wang, Qianlin & Li, Jinghai & Zhang, Jianwen & Dou, Zhan, 2023. "Improved solid radiation model for thermal response in large crude oil tanks," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019667
    DOI: 10.1016/j.energy.2023.128572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019667
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guedri, Kamel & Borjini, Mohamed Naceur & Jeguirim, Mejdi & Brilhac, Jean-François & Saïd, Rachid, 2011. "Numerical study of radiative heat transfer effects on a complex configuration of rack storage fire," Energy, Elsevier, vol. 36(5), pages 2984-2996.
    2. Liao, Shujie & Wang, Fengxia & Wu, Ting & Pan, Wei, 2016. "Crude oil price decision under considering emergency and release of strategic petroleum reserves," Energy, Elsevier, vol. 102(C), pages 436-443.
    3. Deng, Lei & Tang, Fei & Wang, Xinkai, 2021. "Uncontrollable combustion characteristics of energy storage oil pool: Modelling of mass loss rate and flame merging time of annular pools," Energy, Elsevier, vol. 224(C).
    4. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Gao, Zihe & Lin, Shenghui & Ji, Jie & Li, Mengyuan, 2019. "An experimental study on combustion performance and flame spread characteristics over liquid diesel and ethanol-diesel blended fuel," Energy, Elsevier, vol. 170(C), pages 349-355.
    6. Shi, Congling & Deng, Lei & Ren, Fei & Tang, Fei, 2023. "Experimental study on the flame height evolution of two adjacent hydrocarbon pool fires under transverse air flow," Energy, Elsevier, vol. 262(PB).
    7. Ji, Jie & Gong, Changzhi & Wan, Huaxian & Gao, Zihe & Ding, Long, 2019. "Prediction of thermal radiation received by vertical targets based on two-dimensional flame shape from rectangular n-heptane pool fires with different aspect ratios," Energy, Elsevier, vol. 185(C), pages 644-652.
    8. Li, Manhou & Han, Guangzhao & Pan, Yang & Sun, Lida & Li, Quan & Meng, Weijing, 2020. "Experimental investigation on flame spread over jet fuel with influence of external heat radiation," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    2. Luo, Sai & Xu, JingBo & Wang, Chen & Ji, Jie, 2023. "Experimental study of flame spread behavior and heat transfer mechanism over n-butanol fuel in trays of different widths," Energy, Elsevier, vol. 282(C).
    3. Chen, Jian & Song, Ye & Yu, Yueyang & Xiao, Guoqing & Tam, Wai Cheong & Kong, Depeng, 2022. "The influence of a plate obstacle on the burning behavior of small scale pool fires: An experimental study," Energy, Elsevier, vol. 254(PB).
    4. Wang, Chen & Ji, Jie, 2023. "Experimental study of dynamic combustion behavior and heat transfer of heptane pool fire with burning time under thin fuel thickness (2.0 mm–14.0 mm)," Energy, Elsevier, vol. 270(C).
    5. Yu, Longxing & Wan, Huaxian & Gao, Zihe & Ji, Jie, 2021. "Study on flame merging behavior and air entrainment restriction of multiple fires," Energy, Elsevier, vol. 218(C).
    6. Shi, Congling & Deng, Lei & Ren, Fei & Tang, Fei, 2023. "Experimental study on the flame height evolution of two adjacent hydrocarbon pool fires under transverse air flow," Energy, Elsevier, vol. 262(PB).
    7. Zhao, Jinlong & Zhang, Xiang & Zhang, Jianping & Wang, Wei & Chen, Changkun, 2022. "Experimental study on the flame length and burning behaviors of pool fires with different ullage heights," Energy, Elsevier, vol. 246(C).
    8. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    9. Li, Manhou & Xu, Zhiguo & Luo, Qiuting & Wang, Changjian, 2023. "Investigation of bicubic flame radiation model of continuously opposed spilling fire over n-butanol fuel," Energy, Elsevier, vol. 272(C).
    10. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    11. Tan, Hua & Iqbal, Nadeem & Wu, Zhengzhong, 2022. "Evaluating the impact of stakeholder engagement for renewable energy sources and economic growth for CO2 emission," Renewable Energy, Elsevier, vol. 198(C), pages 999-1007.
    12. Michał Bembenek & Bolesław Karwat & Vasyl Melnyk & Yurii Mosora, 2023. "Research on the Impact of Supplying the Air-Cooled D21A1 Engine with RME B100 Biodiesel on Its Operating Parameters," Energies, MDPI, vol. 16(18), pages 1-13, September.
    13. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Sun, Xiepeng & Zhang, Xiaolei & Lv, Jiang & Chen, Xiaotao & Hu, Longhua, 2023. "Experimental study on the buoyant turbulent diffusion flame height of various intermittent levels," Applied Energy, Elsevier, vol. 351(C).
    15. Gao, Dan & Li, Zheng & Liu, Pei & Zhao, Jiazhu & Zhang, Yuning & Li, Canbing, 2018. "A coordinated energy security model taking strategic petroleum reserve and alternative fuels into consideration," Energy, Elsevier, vol. 145(C), pages 171-181.
    16. Ding, Long & Gong, Changzhi & Ge, Fanliang & Ji, Jie, 2021. "Experimental study on flame radiation characteristic from line pool fires of n-heptane fuel in open space," Energy, Elsevier, vol. 218(C).
    17. Li, Tianxiao & Liu, Pei & Li, Zheng, 2021. "Optimal scale of natural gas reserves in China under increasing and fluctuating demand: A quantitative analysis," Energy Policy, Elsevier, vol. 152(C).
    18. Artur Krzemiński & Adam Ustrzycki, 2023. "Effect of Ethanol Added to Diesel Fuel on the Range of Fuel Spray," Energies, MDPI, vol. 16(4), pages 1-15, February.
    19. Liu, Zhen & Tang, Yuk Ming & Chau, Ka Yin & Chien, Fengsheng & Iqbal, Wasim & Sadiq, Muhammad, 2021. "Incorporating strategic petroleum reserve and welfare losses: A way forward for the policy development of crude oil resources in South Asia," Resources Policy, Elsevier, vol. 74(C).
    20. Gao, Zihe & Wan, Huaxian & Ji, Jie & Bi, Yubo, 2019. "Experimental prediction on the performance and propagation of ceiling jets under the influence of wall confinement," Energy, Elsevier, vol. 178(C), pages 378-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223019667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.