IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v275y2023ics0360544223008964.html
   My bibliography  Save this article

Multipath retrofit planning approach for coal-fired power plants in low-carbon power system transitions: Shanxi Province case in China

Author

Listed:
  • Zhi, Zhang
  • Ming, Zhou
  • Bo, Yuan
  • Zun, Guo
  • Zhaoyuan, Wu
  • Gengyin, Li

Abstract

The low-carbon transition of the power industry plays a critical role for China in achieving carbon neutrality. Technical retrofitting for coal-fired power plants improves their flexibility and reduces carbon emissions. China has a large stock of coal-fired power plants, and the retrofit planning of existing coal-fired power plants is an important part of the decarbonizing power system. In this study, a decision support tool that provides coal-fired power plant retrofit investment decisions in low-carbon power system transition is proposed. First, three retrofit paths are investigated. In addition to flexibility reformation, carbon capture utilization and storage reformation, a novel scheme is introduced to transform retired or aged coal-fired power plants into a Carnot battery, also known as a thermal storage power plant. Then, a multipath retrofit planning model for coal-fired power plants is proposed, in which the embedded operational problem is a unit commitment problem considering flexibility and frequency security constraints. Therefore, the problem of frequency safety and uncertainty caused by the high share of variable renewable energy in the power system is solved. The planning model is solved by hyperplane piecewise linearization and the chance-constrained deterministic transformation method. Finally, based on the Shanxi Provincial power system, the roles of flexibility reformation, carbon capture utilization and storage reformation, and Carnot battery reconstruction are analysed, and coal-fired power plant retrofit planning suggestions for the Shanxi power system are provided in this study.

Suggested Citation

  • Zhi, Zhang & Ming, Zhou & Bo, Yuan & Zun, Guo & Zhaoyuan, Wu & Gengyin, Li, 2023. "Multipath retrofit planning approach for coal-fired power plants in low-carbon power system transitions: Shanxi Province case in China," Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008964
    DOI: 10.1016/j.energy.2023.127502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223008964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamidpour, Hamidreza & Aghaei, Jamshid & Pirouzi, Sasan & Niknam, Taher & Nikoobakht, Ahmad & Lehtonen, Matti & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Coordinated expansion planning problem considering wind farms, energy storage systems and demand response," Energy, Elsevier, vol. 239(PD).
    2. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Yin, Yue & Liu, Tianqi & Wu, Lei & He, Chuan & Liu, Yikui, 2021. "Frequency-constrained multi-source power system scheduling against N-1 contingency and renewable uncertainty," Energy, Elsevier, vol. 216(C).
    5. Zhao, Yongliang & Liu, Ming & Wang, Chaoyang & Li, Xin & Chong, Daotong & Yan, Junjie, 2018. "Increasing operational flexibility of supercritical coal-fired power plants by regulating thermal system configuration during transient processes," Applied Energy, Elsevier, vol. 228(C), pages 2375-2386.
    6. Bialek, J., 2020. "What does the power outage on 9 August 2019 tell us about GB power system," Cambridge Working Papers in Economics 2018, Faculty of Economics, University of Cambridge.
    7. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    8. Glensk, Barbara & Madlener, Reinhard, 2019. "The value of enhanced flexibility of gas-fired power plants: A real options analysis," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Yin, Linfei & Xie, Jiaxing, 2022. "Multi-feature-scale fusion temporal convolution networks for metal temperature forecasting of ultra-supercritical coal-fired power plant reheater tubes," Energy, Elsevier, vol. 238(PA).
    3. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    4. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    5. Min Pang & Yichang Zhang & Sha He & Qiong Li, 2023. "Influencing Factors and Their Influencing Mechanisms on Integrated Power and Gas System Coupling," Sustainability, MDPI, vol. 15(17), pages 1-13, September.
    6. Christian Hauenstein & Franziska Holz & Lennart Rathje & Thomas Mitterecker, 2022. "Stranded Assets in the Coal Export Industry? The Case of the Australian Galilee Basin," Discussion Papers of DIW Berlin 2003, DIW Berlin, German Institute for Economic Research.
    7. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    8. Ziqian Zhang & Carina Lehmal & Philipp Hackl & Robert Schuerhuber, 2022. "Transient Stability Analysis and Post-Fault Restart Strategy for Current-Limited Grid-Forming Converter," Energies, MDPI, vol. 15(10), pages 1-26, May.
    9. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    10. Gharibpour, Hassan & Aminifar, Farrokh & Rahmati, Iman & Keshavarz, Arezou, 2021. "Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets," Applied Energy, Elsevier, vol. 287(C).
    11. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    12. Ulaa AlHaddad & Abdullah Basuhail & Maher Khemakhem & Fathy Elbouraey Eassa & Kamal Jambi, 2023. "Towards Sustainable Energy Grids: A Machine Learning-Based Ensemble Methods Approach for Outages Estimation in Extreme Weather Events," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    13. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    14. Jiang, Tangyang & Cao, Chi & Lei, Leyuan & Hou, Jie & Yu, Yang & Jahanger, Atif, 2023. "Temporal and spatial patterns, efficiency losses and impact factors of energy mismatch in China under environmental constraints," Energy, Elsevier, vol. 282(C).
    15. Marcy, Cara & Goforth, Teagan & Nock, Destenie & Brown, Maxwell, 2022. "Comparison of temporal resolution selection approaches in energy systems models," Energy, Elsevier, vol. 251(C).
    16. Francesco Macheda, 2022. "Industrial Policies and State-Owned Enterprises: The Foundations of China’s Path Towards Decarbonization," L'industria, Società editrice il Mulino, issue 4, pages 581-619.
    17. Mosquera-López, Stephania & Uribe, Jorge M., 2022. "Pricing the risk due to weather conditions in small variable renewable energy projects," Applied Energy, Elsevier, vol. 322(C).
    18. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    19. Araya, Natalia & Ramírez, Yendery & Cisternas, Luis A. & Kraslawski, Andrzej, 2021. "Use of real options to enhance water-energy nexus in mine tailings management," Applied Energy, Elsevier, vol. 303(C).
    20. Zhao, Haitao & Jiang, Peng & Chen, Zhe & Ezeh, Collins I. & Hong, Yuanda & Guo, Yishan & Zheng, Chenghang & Džapo, Hrvoje & Gao, Xiang & Wu, Tao, 2019. "Improvement of fuel sources and energy products flexibility in coal power plants via energy-cyber-physical-systems approach," Applied Energy, Elsevier, vol. 254(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:275:y:2023:i:c:s0360544223008964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.