IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223002487.html
   My bibliography  Save this article

An H-shaped coupler energy harvester for application in heavy railways

Author

Listed:
  • Fan, Chengliang
  • Li, Hai
  • Zhang, Zutao
  • Pan, Yajia
  • Wu, Xiaoping
  • Ahmed, Ammar

Abstract

The lack of onboard power supply for the sensors used for freight trailer safety monitoring. This paper proposes an H-shaped coupler energy harvester (HC-EH) for applications in heavy railways. The HC-EH is mainly divided into three modules: vibration input, motion conversion and energy conversion. When the train is in normal form, the adjacent couplers have relative motion used to excite the HC-EH through the vibration input module. Then the bidirectional reciprocations are converted into unidirectional rotations by the motion conversion module. The damage to the mechanical structure caused by the huge impact force between the couplings on the heavy railway is solved by the H-type structure with a parallel distribution of input and transmission utilized by the HC-EH. A generator converts kinetic energy into electricity stored in supercapacitors in the energy conversion module and provides power for the railway onboard monitoring sensor network. The system dynamics, performance and mechanical properties of full-scale prototypes were studied using mechanical testing and sensing fixtures. In the bench test, the peak and average output power were 9.67 W, and 5.14 W, respectively, and the peak efficiency was 56.49%. Finally, the practical applications of the proposed HC-EH in Datong-Qinhuangdao Railway are studied.

Suggested Citation

  • Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002487
    DOI: 10.1016/j.energy.2023.126854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223002487
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Peng & Qi, Lingfei & Sun, Mengdie & Luo, Dabing & Zhang, Zutao, 2021. "A novel wind energy harvesting system with hybrid mechanism for self-powered applications in subway tunnels," Energy, Elsevier, vol. 227(C).
    2. Qi, Lingfei & Wu, Xiaoping & Zeng, Xiaohui & Feng, Yan & Pan, Hongye & Zhang, Zutao & Yuan, Yanping, 2020. "An electro-mechanical braking energy recovery system based on coil springs for energy saving applications in electric vehicles," Energy, Elsevier, vol. 200(C).
    3. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    4. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    5. Atabani, A.E. & Badruddin, Irfan Anjum & Mekhilef, S. & Silitonga, A.S., 2011. "A review on global fuel economy standards, labels and technologies in the transportation sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4586-4610.
    6. Hongye pan, & Jia, Changyuan & Li, Haobo & Zhou, Xianzheng & Fang, Zheng & Wu, Xiaoping & Zhang, Zutao, 2022. "A renewable energy harvesting wind barrier based on coaxial contrarotation for self-powered applications on railways," Energy, Elsevier, vol. 258(C).
    7. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    8. Wang, Yuan & Zhu, Xin & Zhang, Tingsheng & Bano, Shehar & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping, 2018. "A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film," Applied Energy, Elsevier, vol. 230(C), pages 52-61.
    9. Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
    10. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Bethi, Rajagopal Vinod & Laws, Praveen & Kumar, Pankaj & Mitra, Santanu, 2019. "Modified Savonius wind turbine for harvesting wind energy from trains moving in tunnels," Renewable Energy, Elsevier, vol. 135(C), pages 1056-1063.
    12. Wang, K.F. & Wang, B.L., 2018. "Energy gathering performance of micro/nanoscale circular energy harvesters based on flexoelectric effect," Energy, Elsevier, vol. 149(C), pages 597-606.
    13. Gao, Mingyuan & Su, Chengguang & Cong, Jianli & Yang, Fan & Wang, Yifeng & Wang, Ping, 2019. "Harvesting thermoelectric energy from railway track," Energy, Elsevier, vol. 180(C), pages 315-329.
    14. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    15. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
    16. Lin, Teng & Pan, Yu & Chen, Shikui & Zuo, Lei, 2018. "Modeling and field testing of an electromagnetic energy harvester for rail tracks with anchorless mounting," Applied Energy, Elsevier, vol. 213(C), pages 219-226.
    17. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    18. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    19. Liu, Kai & Fu, Chaoliang & Wang, Hao & Wang, Fang & Xu, Peixin & Kan, Chaohao, 2020. "Exploring the energy-saving potential of electromagnetic induction pavement via magnetic concentrating technique," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tian & Zhang, Qichang & Han, Jianxin & Wang, Wei & Yan, Yucheng & Cao, Xinyu & Hao, Shuying, 2023. "Bio-inspired quad-stable piezoelectric energy harvester for low-frequency vibration scavenging," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    2. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    3. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    5. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    6. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    7. Hongye pan, & Jia, Changyuan & Li, Haobo & Zhou, Xianzheng & Fang, Zheng & Wu, Xiaoping & Zhang, Zutao, 2022. "A renewable energy harvesting wind barrier based on coaxial contrarotation for self-powered applications on railways," Energy, Elsevier, vol. 258(C).
    8. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    9. Wang, Yifeng & Li, Shoutai & Gao, Mingyuan & Ouyang, Huajiang & He, Qing & Wang, Ping, 2021. "Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration," Applied Energy, Elsevier, vol. 300(C).
    10. Yang, Yiqing & Pian, Yawei & Liu, Qiang, 2019. "Design of energy harvester using rotating motion rectifier and its application on bicycle," Energy, Elsevier, vol. 179(C), pages 222-231.
    11. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    12. Bartosz Drzymała & Jakub Gęca & Marcin Bocheński, 2023. "Kinetic Vibration Energy Harvester Based on Electromechanical Converter with Power Electronics Active Rectifier," Energies, MDPI, vol. 16(20), pages 1-12, October.
    13. Yang, Fan & Gao, Mingyuan & Wang, Ping & Zuo, Jianyong & Dai, Jun & Cong, Jianli, 2021. "Efficient piezoelectric harvester for random broadband vibration of rail," Energy, Elsevier, vol. 218(C).
    14. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    15. Kuang, Yang & Chew, Zheng Jun & Ruan, Tingwen & Lane, Tim & Allen, Ben & Nayar, Bimal & Zhu, Meiling, 2021. "Magnetic field energy harvesting from the traction return current in rail tracks," Applied Energy, Elsevier, vol. 292(C).
    16. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    17. Said Bentouba & Nadjet Zioui & Peter Breuhaus & Mahmoud Bourouis, 2023. "Overview of the Potential of Energy Harvesting Sources in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, July.
    18. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    19. Pan, Yu & Lin, Teng & Qian, Feng & Liu, Cheng & Yu, Jie & Zuo, Jianyong & Zuo, Lei, 2019. "Modeling and field-test of a compact electromagnetic energy harvester for railroad transportation," Applied Energy, Elsevier, vol. 247(C), pages 309-321.
    20. Nithesh Naik & P. Suresh & Sanjay Yadav & M. P. Nisha & José Luis Arias-Gonzáles & Juan Carlos Cotrina-Aliaga & Ritesh Bhat & Manohara D. Jalageri & Yashaarth Kaushik & Aakif Budnar Kunjibettu, 2023. "A Review on Composite Materials for Energy Harvesting in Electric Vehicles," Energies, MDPI, vol. 16(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223002487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.