IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1535-1543.html
   My bibliography  Save this article

A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads

Author

Listed:
  • Zhang, Xingtian
  • Pan, Hongye
  • Qi, Lingfei
  • Zhang, Zutao
  • Yuan, Yanping
  • Liu, Yujie

Abstract

As the demand for clean and sustainable energy increases, it is useful to explore alternative energy strategies, including harvesting the kinetic energy of vibration. In this paper, we design and characterize a renewable energy-harvesting system that collects energy from rail track vibrations by using a mechanical vibration rectifier (MVR). The MVR consists of meshing gears and one-way bearings, and it transforms bidirectional vibrations into unidirectional rotation to improve the efficiency of transmission. A DC motor is used as a generator, and a supercapacitor is used to store the electricity. The operation of the MVR was modelled and simulated including vehicle-track contact, track vibration, the dynamic response of the MVR and an electromechanical analysis of the generator. A prototype was manufactured to demonstrate the feasibility of the design. A peak voltage of 58V comes close to meeting the requirements for practical usage in rail applications. These devices would be able to supply power for safety equipment and allow for emergency repairs in areas without power.

Suggested Citation

  • Zhang, Xingtian & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping & Liu, Yujie, 2017. "A renewable energy harvesting system using a mechanical vibration rectifier (MVR) for railroads," Applied Energy, Elsevier, vol. 204(C), pages 1535-1543.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1535-1543
    DOI: 10.1016/j.apenergy.2017.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917304610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McKinley, Ian M. & Lee, Felix Y. & Pilon, Laurent, 2014. "A novel thermomechanical energy conversion cycle," Applied Energy, Elsevier, vol. 126(C), pages 78-89.
    2. Xie, Yu & Wu, Shi-jun & Yang, Can-jun, 2016. "Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter," Applied Energy, Elsevier, vol. 164(C), pages 620-627.
    3. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    4. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2013. "Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development," Energy Policy, Elsevier, vol. 58(C), pages 347-357.
    5. Zhang, Zutao & Zhang, Xingtian & Chen, Weiwu & Rasim, Yagubov & Salman, Waleed & Pan, Hongye & Yuan, Yanping & Wang, Chunbai, 2016. "A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle," Applied Energy, Elsevier, vol. 178(C), pages 177-188.
    6. Zhao, Dan & Ji, Chenzhen & Teo, C. & Li, Shihuai, 2014. "Performance of small-scale bladeless electromagnetic energy harvesters driven by water or air," Energy, Elsevier, vol. 74(C), pages 99-108.
    7. Zhang, Zutao & Zhang, Xingtian & Rasim, Yagubov & Wang, Chunbai & Du, Bing & Yuan, Yanping, 2016. "Design, modelling and practical tests on a high-voltage kinetic energy harvesting (EH) system for a renewable road tunnel based on linear alternators," Applied Energy, Elsevier, vol. 164(C), pages 152-161.
    8. Liu, Li-qun & Wang, Zhi-xin, 2009. "The development and application practice of wind-solar energy hybrid generation systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1504-1512, August.
    9. Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Wonseop & Kim, Kyung-Bum & Cho, Jae Yong & Yang, Chan Ho & Kim, Jung Hun & Song, Gyeong Ju & Song, Yewon & Jeon, Deok Hwan & Ahn, Jung Hwan & Do Hong, Seong & Kim, Jihoon & Lee, Tae Hee & Choi,, 2019. "Watts-level road-compatible piezoelectric energy harvester for a self-powered temperature monitoring system on an actual roadway," Applied Energy, Elsevier, vol. 243(C), pages 313-320.
    2. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    3. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    4. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.
    5. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
    6. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    7. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    8. Azam, Ali & Ahmed, Ammar & Kamran, Muhammad Sajid & Hai, Li & Zhang, Zutao & Ali, Asif, 2021. "Knowledge structuring for enhancing mechanical energy harvesting (MEH): An in-depth review from 2000 to 2020 using CiteSpace," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
    10. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Wang, Yuan & Zhu, Xin & Zhang, Tingsheng & Bano, Shehar & Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yuan, Yanping, 2018. "A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film," Applied Energy, Elsevier, vol. 230(C), pages 52-61.
    12. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    13. Pan, Hongye & Qi, Lingfei & Zhang, Xingtian & Zhang, Zutao & Salman, Waleed & Yuan, Yanping & Wang, Chunbai, 2017. "A portable renewable solar energy-powered cooling system based on wireless power transfer for a vehicle cabin," Applied Energy, Elsevier, vol. 195(C), pages 334-343.
    14. Azam, Ali & Ahmed, Ammar & Hayat, Nasir & Ali, Shoukat & Khan, Abdul Shakoor & Murtaza, Ghulam & Aslam, Touqeer, 2021. "Design, fabrication, modelling and analyses of a movable speed bump-based mechanical energy harvester (MEH) for application on road," Energy, Elsevier, vol. 214(C).
    15. Jasim, Abbas & Yesner, Greg & Wang, Hao & Safari, Ahmad & Maher, Ali & Basily, B., 2018. "Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications," Applied Energy, Elsevier, vol. 224(C), pages 438-447.
    16. Wang, Haikun & He, Chaoming & Lv, Siyun & Sun, Haoran, 2018. "A new electromagnetic vibrational energy harvesting device for swaying cables," Applied Energy, Elsevier, vol. 228(C), pages 2448-2461.
    17. Salman, Waleed & Qi, Lingfei & Zhu, Xin & Pan, Hongye & Zhang, Xingtian & Bano, Shehar & Zhang, Zutao & Yuan, Yanping, 2018. "A high-efficiency energy regenerative shock absorber using helical gears for powering low-wattage electrical device of electric vehicles," Energy, Elsevier, vol. 159(C), pages 361-372.
    18. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    19. Chang, Pao-Long & Ho, Shu-Ping & Hsu, Chiung-Wen, 2013. "Dynamic simulation of government subsidy policy effects on solar water heaters installation in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 385-396.
    20. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1535-1543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.