IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222032893.html
   My bibliography  Save this article

Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends

Author

Listed:
  • Uslu, Samet
  • Celik, Mehmet

Abstract

The supplement of metal nanoparticles to diesel fuel in specific amounts has been included as an innovative approach to the studies on reducing pollutant emissions of compression ignition engines. In present research, the impacts of adding cerium dioxide (CeO2) nanoparticles, which is a highly oxidizing and reactive additive, to diesel fuel in different amounts (25, 50, 75, and 100 ppm) were experimentally investigated at different engine loads (8, 12, 16, 20, and 25 Nm) and optimized using the response surface methodology (RSM). According to the experimental results, the supplement of CeO2 decreased the brake-specific fuel consumption (BSFC) and enhanced the brake-thermal efficiency (BTHE) and exhaust gas temperature (EGT). On the other hand, the addition of CeO2 caused a decrease in hydrocarbon (HC), carbon monoxide (CO), and smoke emissions, and on the contrary, an increase in nitrogen oxide (NOx) emissions. Under the RSM findings, determined the optimal CeO2 quantity and engine load as 100 ppm and 12 Nm, respectively. Optimum responses corresponding to optimal CeO2 and engine load were determined as 23.125%, 429.766 g/kWh, 335.143 °C, 0.257%, 130.898 ppm, 786.309 ppm, and 25.654% for BTHE, BSFC, EGT, CO, HC, NOx, and smoke, respectively. Optimal results were obtained with a high desirability value of 0.7115. A good agreement between the experimental and RSM-predicted response values indicates that the developed RSM design was successful.

Suggested Citation

  • Uslu, Samet & Celik, Mehmet, 2023. "Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032893
    DOI: 10.1016/j.energy.2022.126403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032893
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Jiangjun & He, Chengjun & Lv, Gang & Zhuang, Yuan & Qian, Yejian & Pan, Suozhu, 2021. "The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol," Energy, Elsevier, vol. 230(C).
    2. Junshuai Lv & Su Wang & Beibei Meng, 2022. "The Effects of Nano-Additives Added to Diesel-Biodiesel Fuel Blends on Combustion and Emission Characteristics of Diesel Engine: A Review," Energies, MDPI, vol. 15(3), pages 1-27, January.
    3. Kumar, Shiva & Dinesha, P. & Rosen, Marc A., 2019. "Effect of injection pressure on the combustion, performance and emission characteristics of a biodiesel engine with cerium oxide nanoparticle additive," Energy, Elsevier, vol. 185(C), pages 1163-1173.
    4. Liu, Junheng & Yang, Jun & Sun, Ping & Ji, Qian & Meng, Jian & Wang, Pan, 2018. "Experimental investigation of in-cylinder soot distribution and exhaust particle oxidation characteristics of a diesel engine with nano-CeO2 catalytic fuel," Energy, Elsevier, vol. 161(C), pages 17-27.
    5. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    6. Khond, Vivek W. & Kriplani, V.M., 2016. "Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1338-1348.
    7. Simsek, Suleyman & Uslu, Samet & Simsek, Hatice, 2022. "Proportional impact prediction model of animal waste fat-derived biodiesel by ANN and RSM technique for diesel engine," Energy, Elsevier, vol. 239(PD).
    8. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    9. Nawshad Haque & Anthony Hughes & Seng Lim & Chris Vernon, 2014. "Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact," Resources, MDPI, vol. 3(4), pages 1-22, October.
    10. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    11. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod.Kumar, 2017. "A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 563-588.
    12. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
    13. Çeli̇k, Mehmet & Bayindirli, Cihan, 2020. "Enhancement performance and exhaust emissions of rapeseed methyl ester by using n-hexadecane and n-hexane fuel additives," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeyaseelan, Thangaraja & El Samad, Tala & Rajkumar, Sundararajan & Chatterjee, Abhay & Al-Zaili, Jafar, 2023. "A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India," Energy, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uslu, Samet & Simsek, Suleyman & Simsek, Hatice, 2023. "RSM modeling of different amounts of nano-TiO2 supplementation to a diesel engine running with hemp seed oil biodiesel/diesel fuel blends," Energy, Elsevier, vol. 266(C).
    2. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    3. Liang, Daolun & Ren, Ke & Wu, Zizhan & Jiang, Yangxu & Shen, Dekui & Li, Heping & Liu, Jianzhong, 2021. "Combustion characteristics of oxygenated slurry droplets of nano-Al/EtOH and nano-Al/TPGME blends," Energy, Elsevier, vol. 220(C).
    4. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    5. Ahmed A. Fattah & Tarek M. Aboul-Fotouh & Khaled A. Fattah & Aya H. Mohammed, 2022. "Utilization of Selected Nanoparticles (Ag 2 O and MnO 2 ) for the Production of High-Quality and Environmental-Friendly Gasoline," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    6. Channapattana, Shylesha V. & Campli, Srinidhi & Madhusudhan, A. & Notla, Srihari & Arkerimath, Rachayya & Tripathi, Mukesh Kumar, 2023. "Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy," Energy, Elsevier, vol. 267(C).
    7. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    8. K. M. Akkoli & S. C. Kamate & S. N. Topannavar & A. R. Bhavimani & N. R. Banapurmath & Ibham Veza & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & A. S. El-Shafay & M. A. Kalam & M. M. Shivashimpi & , 2022. "Influence of Injection Pressure and Aluminium Oxide Nano Particle-Added Fish Oil Methyl Ester on the Performance and Emission of Compression Ignition Engine," Energies, MDPI, vol. 15(24), pages 1-27, December.
    9. Shelare, Sagar D. & Belkhode, Pramod N. & Nikam, Keval Chandrakant & Jathar, Laxmikant D. & Shahapurkar, Kiran & Soudagar, Manzoore Elahi M. & Veza, Ibham & Khan, T.M. Yunus & Kalam, M.A. & Nizami, Ab, 2023. "Biofuels for a sustainable future: Examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production," Energy, Elsevier, vol. 282(C).
    10. Hossain, Abul K. & Sharma, Vikas & Ahmad, Gulzar & Awotwe, Tabbi, 2023. "Energy outputs and emissions of biodiesels as a function of coolant temperature and composition," Renewable Energy, Elsevier, vol. 215(C).
    11. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    12. Özer, Salih. & Demir, Usame & Koçyiğit, Serhat., 2023. "Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions," Energy, Elsevier, vol. 266(C).
    13. Ağbulut, Ümit & Polat, Fikret & Sarıdemir, Suat, 2021. "A comprehensive study on the influences of different types of nano-sized particles usage in diesel-bioethanol blends on combustion, performance, and environmental aspects," Energy, Elsevier, vol. 229(C).
    14. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    15. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    16. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Irfan Anjum Badruddin, 2021. "Influence of Combustion Chamber Shapes and Nozzle Geometry on Performance, Emission, and Combustion Characteristics of CRDI Engine Powered with Biodiesel Blends," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    17. Percy, A. Jemila & Edwin, M., 2023. "Studies on the performance and emission characteristics of a dual fuel VCR engine using producer gas as secondary fuel: An optimization approach using response surface methodology," Energy, Elsevier, vol. 263(PA).
    18. Paweł Fabiś & Bartosz Flekiewicz, 2021. "Influence of LPG and DME Composition on Spark Ignition Engine Performance," Energies, MDPI, vol. 14(17), pages 1-18, September.
    19. Madaleno, Mara & Taskin, Dilvin & Dogan, Eyup & Tzeremes, Panayiotis, 2023. "A dynamic connectedness analysis between rare earth prices and renewable energy," Resources Policy, Elsevier, vol. 85(PB).
    20. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).

    More about this item

    Keywords

    CeO2; Nanoparticle; Diesel; Optimization approach; RSM;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222032893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.