IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics0360544222032650.html
   My bibliography  Save this article

Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming

Author

Listed:
  • Wang, Heng
  • Kou, Zuhao
  • Ji, Zemin
  • Wang, Shouchuan
  • Li, Yunfei
  • Jiao, Zunsheng
  • Johnson, Matthew
  • McLaughlin, J. Fred

Abstract

Geological CO2 sequestration in deep saline aquifers has been extendedly investigated to reach the goal of carbon neutral as large amount of CO2 can be reduced in a short time. This study investigates the feasibility of water-alternating-gas (WAG) injection and brine extraction on enhancing CO2 storage in a target deep saline aquifer, Minnelusa Sandstone in the Powder River Basin (PRB) of Wyoming. An integrated numerical model is developed to account for four scenarios: (1) CO2 continuous injection (CI) through one injection well, (2) WAG injection through one injection well, (3) CO2 CI through one injection well and brine extraction through one producer, (4) WAG injection through one injection well and brine extraction through one producer. Simulation results suggest that WAG injection and brine extraction corporately make it possible to enhance CO2 injectivity while securing CO2 storage safety. For instance, WAG injection considerably reduces structural trapping contribution while enhances dissolved and residual trapping contributions. As for brine extraction, it can decrease the maximum averaged reservoir pressure by 37% and 22% for CI and WAG injection, respectively. Besides, sensitive analyses of the operational parameters for the fourth scenarios are performed. Results reveal that, when the amount of total CO2 injection has been predetermined, CO2 injection time and rate within each period of WAG should be small whereas it is preferable to have large water injection time and rate. This is to secure desirable dissolved and residual trapping contributions (store CO2 with safety). Sensitive degree results confirm that CO2 injection rate, water injection time, and CO2 injection time of WAG injection exhibit significant effects on CO2 storage whereas the impacts of producer bottom-hole pressure (BHP), water injection rate, and CO2-water injection time are relatively weaker. This study not only sheds light on achieving double-win goal: enhance CO2 injectivity and store CO2 with safety, but also can be a critical reference for other CO2 storage in deep saline aquifers.

Suggested Citation

  • Wang, Heng & Kou, Zuhao & Ji, Zemin & Wang, Shouchuan & Li, Yunfei & Jiao, Zunsheng & Johnson, Matthew & McLaughlin, J. Fred, 2023. "Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032650
    DOI: 10.1016/j.energy.2022.126379
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126379?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Qi & Wei, Ya-Ni & Liu, Guizhen & Lin, Qing, 2014. "Combination of CO2 geological storage with deep saline water recovery in western China: Insights from numerical analyses," Applied Energy, Elsevier, vol. 116(C), pages 101-110.
    2. Ge, Jiachao & Zhang, Xiaozhou & Le-Hussain, Furqan, 2022. "Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahim Fathi & Danilo Arcentales & Fatemeh Belyadi, 2023. "Impacts of Different Operation Conditions and Geological Formation Characteristics on CO 2 Sequestration in Citronelle Dome, Alabama," Energies, MDPI, vol. 16(7), pages 1-20, April.
    2. Lekun Zhao & Guoqiang Sang & Jialei Ding & Jiangfei Sun & Tongjing Liu & Yuedong Yao, 2023. "Research on the Timing of WAG Intervention in Low Permeability Reservoir CO 2 Flooding Process to Improve CO 2 Performance and Enhance Recovery," Energies, MDPI, vol. 16(21), pages 1-24, October.
    3. Mohammad Hossein Golestan & Carl Fredrik Berg, 2024. "Simulations of CO 2 Dissolution in Porous Media Using the Volume-of-Fluid Method," Energies, MDPI, vol. 17(3), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    2. Zhang, Kaiqiang & Jia, Na & Liu, Lirong, 2019. "CO2 storage in fractured nanopores underground: Phase behaviour study," Applied Energy, Elsevier, vol. 238(C), pages 911-928.
    3. He, Minyu & Teng, Liumei & Gao, Yuxiang & Rohani, Sohrab & Ren, Shan & Li, Jiangling & Yang, Jian & Liu, Qingcai & Liu, Weizao, 2022. "Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization," Energy, Elsevier, vol. 248(C).
    4. De Silva, G.P.D. & Ranjith, P.G. & Perera, M.S.A. & Chen, B., 2016. "Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: Implications for deep earth energy extraction," Applied Energy, Elsevier, vol. 161(C), pages 24-40.
    5. Bing Bai & Xiaochun Li & Haiqing Wu & Yongsheng Wang & Mingze Liu, 2017. "A methodology for designing maximum allowable wellhead pressure for CO 2 injection: application to the Shenhua CCS demonstration project, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(1), pages 158-181, February.
    6. Chen, Zheng-Ao & Li, Qi & Liu, Lan-Cui & Zhang, Xian & Kuang, Liping & Jia, Li & Liu, Guizhen, 2015. "A large national survey of public perceptions of CCS technology in China," Applied Energy, Elsevier, vol. 158(C), pages 366-377.
    7. Kang, Yili & Zhou, Hexiang & Xu, Chengyuan & Yang, Xinglin & You, Zhenjiang, 2023. "Experimental study on the effect of fracture surface morphology on plugging zone strength based on 3D printing," Energy, Elsevier, vol. 262(PA).
    8. Tian, Weibing & Wu, Keliu & Feng, Dong & Gao, Yanling & Li, Jing & Chen, Zhangxin, 2023. "Dynamic contact angle effect on water-oil imbibition in tight oil reservoirs," Energy, Elsevier, vol. 284(C).
    9. Ma, Jianli & Li, Qi & Kühn, Michael & Nakaten, Natalie, 2018. "Power-to-gas based subsurface energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 478-496.
    10. Li, Yi & Yu, Hao & Li, Yi & Liu, Yaning & Zhang, Guijin & Tang, Dong & Jiang, Zhongming, 2020. "Numerical study on the hydrodynamic and thermodynamic properties of compressed carbon dioxide energy storage in aquifers," Renewable Energy, Elsevier, vol. 151(C), pages 1318-1338.
    11. Zhang, Lisong & Zhang, Shiyan & Jiang, Weizhai & Wang, Zhiyuan & Li, Jing & Bian, Yinghui, 2018. "A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage," Energy, Elsevier, vol. 165(PB), pages 1178-1190.
    12. Gregory Tarteh Mwenketishi & Hadj Benkreira & Nejat Rahmanian, 2023. "A Comprehensive Review on Carbon Dioxide Sequestration Methods," Energies, MDPI, vol. 16(24), pages 1-42, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s0360544222032650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.