IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v265y2023ics036054422203208x.html
   My bibliography  Save this article

Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps

Author

Listed:
  • Zhu, Huichao
  • Zhang, Houcheng

Abstract

To upgrade the quality of low-grade waste heat, a new coupling system integrating isopropanol-acetone-hydrogen chemical heat pump (IAH-CHP) to alkaline fuel cell (AFC) is proposed. The irreversible losses in the electrochemical and thermodynamic processes are quantitatively analyzed, and the energy and exergy performance indicators of each system component and coupling system are obtained based on the steady-state mathematical models and thermodynamic laws. Numerical calculations show that the achievable peak output power density and its corresponding energy efficiency, exergy destruction rate density and exergy efficiency are, respectively, 70.95%, 25.65%, 30.84% and 25.59% greater than that of the sole AFC. Optimal operation regions for various key performance indicators are obtained. The competitiveness of the proposed system is checked by comparing it with the available AFC-based coupling systems. Furthermore, the effects of operating temperature, temperature of exothermic reaction, molar ratio of hydrogen to acetone in the exothermic reactor before exothermic reaction, reflux ratio, thermodynamic loss composite parameter and IAH-CHP regenerator effectiveness on the coupling system performance are analyzed. The results obtained in this paper may provide some theoretical bases for improving the thermodynamic performance of such practical coupling systems.

Suggested Citation

  • Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
  • Handle: RePEc:eee:energy:v:265:y:2023:i:c:s036054422203208x
    DOI: 10.1016/j.energy.2022.126322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422203208X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).
    2. Baz, Khan & Cheng, Jinhua & Xu, Deyi & Abbas, Khizar & Ali, Imad & Ali, Hashmat & Fang, Chuandi, 2021. "Asymmetric impact of fossil fuel and renewable energy consumption on economic growth: A nonlinear technique," Energy, Elsevier, vol. 226(C).
    3. Kim, Gabyong & Jung, Han Sol & Park, Sejun & Kang, Yong Tae, 2022. "Performance analysis of type 1 and type 2 hybrid absorption heat pump using novel working pairs," Energy, Elsevier, vol. 241(C).
    4. Cudok, Falk & Giannetti, Niccolò & Ciganda, José L. Corrales & Aoyama, Jun & Babu, P. & Coronas, Alberto & Fujii, Tatsuo & Inoue, Naoyuki & Saito, Kiyoshi & Yamaguchi, Seiichi & Ziegler, Felix, 2021. "Absorption heat transformer - state-of-the-art of industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    6. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    7. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    8. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    9. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    10. Zhang, Houcheng & Lin, Guoxing & Chen, Jincan, 2011. "The performance analysis and multi-objective optimization of a typical alkaline fuel cell," Energy, Elsevier, vol. 36(7), pages 4327-4332.
    11. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    12. Ying Wang & Yao Yang & Shuangfeng Jia & Xiaoming Wang & Kangjie Lyu & Yanqiu Peng & He Zheng & Xing Wei & Huan Ren & Li Xiao & Jianbo Wang & David A. Muller & Héctor D. Abruña & Bing Joe Hwang & Junta, 2019. "Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    13. Chung, Yonsoo & Kim, Beom-Jae & Yeo, Yeong-Koo & Song, Hyung Keun, 1997. "Optimal design of a chemical heat pump using the 2-propanol/acetone/hydrogen system," Energy, Elsevier, vol. 22(5), pages 525-536.
    14. Yeo, Lip Siang & Teng, Sin Yong & Ng, Wendy Pei Qin & Lim, Chun Hsion & Leong, Wei Dong & Lam, Hon Loong & Wong, Yat Choy & Sunarso, Jaka & How, Bing Shen, 2022. "Sequential optimization of process and supply chains considering re-refineries for oil and gas circularity," Applied Energy, Elsevier, vol. 322(C).
    15. Tan, Zhimin & Feng, Xiao & Wang, Yufei, 2021. "Performance comparison of different heat pumps in low-temperature waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Guo, Xinru & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin & Ni, Meng & Liao, Tianjun, 2021. "Energetic, exergetic and ecological evaluations of a hybrid system based on a phosphoric acid fuel cell and an organic Rankine cycle," Energy, Elsevier, vol. 217(C).
    17. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
    18. Tan, Zhimin & Feng, Xiao & Yang, Minbo & Wang, Yufei, 2022. "Energy and economic performance comparison of heat pump and power cycle in low grade waste heat recovery," Energy, Elsevier, vol. 260(C).
    19. Ji, Zhengsen & Niu, Dongxiao & Li, Wanying & Wu, Gengqi & Yang, Xiaolong & Sun, Lijie, 2022. "Improving the energy efficiency of China: An analysis considering clean energy and fossil energy resources," Energy, Elsevier, vol. 259(C).
    20. Xiong Peng & Devashish Kulkarni & Ying Huang & Travis J. Omasta & Benjamin Ng & Yiwei Zheng & Lianqin Wang & Jacob M. LaManna & Daniel S. Hussey & John R. Varcoe & Iryna V. Zenyuk & William E. Mustain, 2020. "Using operando techniques to understand and design high performance and stable alkaline membrane fuel cells," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    21. Demir, Hasan & Mobedi, Moghtada & Ülkü, Semra, 2008. "A review on adsorption heat pump: Problems and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2381-2403, December.
    22. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    23. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xin & Li, Jingwen & Xiong, Yi & Ang, Yee Sin, 2022. "Efficient harvesting of low-grade waste heat from proton exchange membrane fuel cells via thermoradiative power devices," Energy, Elsevier, vol. 258(C).
    2. Guo, Jiangfeng & Huai, Xiulan, 2012. "Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory," Energy, Elsevier, vol. 41(1), pages 335-343.
    3. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    4. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    5. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    6. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Li, Yangyang, 2021. "An alkaline fuel cell/direct contact membrane distillation hybrid system for cogenerating electricity and freshwater," Energy, Elsevier, vol. 225(C).
    7. Jian Sun & Yu Qin & Ran Liu & Guoshun Wang & Dingqun Liu & Yongping Yang, 2023. "Cycle Characteristics of a New High-Temperature Heat Pump Based on Absorption–Compression Revolution," Energies, MDPI, vol. 16(11), pages 1-15, May.
    8. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    9. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2021. "Thermal energy recovery of molten carbonate fuel cells by thermally regenerative electrochemical cycles," Energy, Elsevier, vol. 227(C).
    10. Zhang, Yong & He, Shirong & Jiang, Xiaohui & Xiong, Mu & Ye, Yuntao & Yang, Xi, 2023. "Three-dimensional multi-phase simulation of proton exchange membrane fuel cell performance considering constriction straight channel," Energy, Elsevier, vol. 267(C).
    11. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    12. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    13. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    14. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    15. Li, Menghan & Zhang, Kaiyue & Alamri, Ahmad Mohammed & Ageli, Mohammed Moosa & Khan, Numan, 2023. "Resource curse hypothesis and sustainable development: Evaluating the role of renewable energy and R&D," Resources Policy, Elsevier, vol. 81(C).
    16. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    18. Karmegam Dhanabalan & Muthukumar Perumalsamy & Ganesan Sriram & Nagaraj Murugan & Shalu & Thangarasu Sadhasivam & Tae Hwan Oh, 2023. "Metal–Organic Framework (MOF)-Derived Catalyst for Oxygen Reduction Reaction (ORR) Applications in Fuel Cell Systems: A Review of Current Advancements and Perspectives," Energies, MDPI, vol. 16(13), pages 1-19, June.
    19. Gritli, Mohamed Ilyes & Charfi, Fatma Marrakchi, 2023. "The determinants of oil consumption in Tunisia: Fresh evidence from NARDL approach and asymmetric causality test," Energy, Elsevier, vol. 284(C).
    20. Jovet, Yoann & Lefèvre, Frédéric & Laurent, Alexis & Clausse, Marc, 2022. "Combined energetic, economic and climate change assessment of heat pumps for industrial waste heat recovery," Applied Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:265:y:2023:i:c:s036054422203208x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.