IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222021156.html
   My bibliography  Save this article

3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties

Author

Listed:
  • Song, Rui
  • Wang, Yao
  • Tang, Yu
  • Jiajun peng,
  • Liu, Jianjun
  • Yang, Chunhe

Abstract

As the first effort in literature, the 3DP sample from the micro-CT image of a natural sandstone in this study achieves the printing resolution of 2 μm. The pore structure of both the 3DP and original sample are analyzed comparatively, as well as the pore size distribution (PSD), porosity, and absolute permeability by DRP simulation. The visualized CO2 displacing oil experiment on the 3DP sample are conducted, and compared with the experimental benchmark data. The results indicate that: 1) The PSNR of the 3DP S1 is in [9.010, 14.983], and its SSIM is in [0.870, 0.925]. Most pore features are printed but some are not in its original size or position. 2) The porosity and permeability of the 3DP sample are 10.01% and 27.81mD, showing a decline of 2.91% and 32.49mD compared to the original sample. 3) Two primary causes for the mismatching of the pore structure are confirmed, including insufficient removal of uncured resin, and shrinkage effect in light curing process. 4) Most contact angles of oil in 3DP sample lie in [0°, 90°], indicating it is oil-wetted. This study provides a new tool for the quantitative characterization and accurate understanding of the mobilization and residual mechanism of the multiphases in porous rock.

Suggested Citation

  • Song, Rui & Wang, Yao & Tang, Yu & Jiajun peng, & Liu, Jianjun & Yang, Chunhe, 2022. "3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021156
    DOI: 10.1016/j.energy.2022.125226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021156
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    2. Song, Rui & Sun, Shuyu & Liu, Jianjun & Yang, Chunhe, 2021. "Pore scale modeling on dissociation and transportation of methane hydrate in porous sediments," Energy, Elsevier, vol. 237(C).
    3. Yang, Lei & Ai, Li & Xue, Kaihua & Ling, Zheng & Li, Yanghui, 2018. "Analyzing the effects of inhomogeneity on the permeability of porous media containing methane hydrates through pore network models combined with CT observation," Energy, Elsevier, vol. 163(C), pages 27-37.
    4. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    5. Haddad, Khouloud & Jeguirim, Mejdi & Jellali, Salah & Guizani, Chamseddine & Delmotte, Luc & Bennici, Simona & Limousy, Lionel, 2017. "Combined NMR structural characterization and thermogravimetric analyses for the assessment of the AAEM effect during lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 134(C), pages 10-23.
    6. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    7. Suekane, Tetsuya & Soukawa, Shingo & Iwatani, Satoshi & Tsushima, Shoji & Hirai, Shuichiro, 2005. "Behavior of supercritical CO2 injected into porous media containing water," Energy, Elsevier, vol. 30(11), pages 2370-2382.
    8. Gunde, Akshay C. & Bera, Bijoyendra & Mitra, Sushanta K., 2010. "Investigation of water and CO2 (carbon dioxide) flooding using micro-CT (micro-computed tomography) images of Berea sandstone core using finite element simulations," Energy, Elsevier, vol. 35(12), pages 5209-5216.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    2. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    3. Rui Song & Yu Tang & Yao Wang & Ruiyang Xie & Jianjun Liu, 2022. "Pore-Scale Numerical Simulation of CO 2 –Oil Two-Phase Flow: A Multiple-Parameter Analysis Based on Phase-Field Method," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    5. Rong-Chen Tong & He-Juan Liu & Yu-Jia Song & Li-Huan Xie & Sheng-Nan Ban, 2022. "Permeability and Mechanical Response of Granite after Thermal and CO 2 Bearing Fluid Hydro-Chemical Stimulation," Energies, MDPI, vol. 15(21), pages 1-17, November.
    6. Hongying Tan & Hejuan Liu & Xilin Shi & Hongling Ma & Xiaosong Qiu & Yintong Guo & Shengnan Ban, 2023. "Mechanical and Acoustic Response of Low-Permeability Sandstone under Multilevel Cyclic Loading-Unloading Stress Paths," Energies, MDPI, vol. 16(19), pages 1-18, September.
    7. Wei, Jianguang & Zhang, Ao & Li, Jiangtao & Shang, Demiao & Zhou, Xiaofeng, 2023. "Study on microscale pore structure and bedding fracture characteristics of shale oil reservoir," Energy, Elsevier, vol. 278(PA).
    8. Yao Wang & Shengjun Li & Rui Song & Jianjun Liu & Min Ye & Shiqi Peng & Yongjun Deng, 2022. "Effects of Grain Size and Layer Thickness on the Physical and Mechanical Properties of 3D-Printed Rock Analogs," Energies, MDPI, vol. 15(20), pages 1-19, October.
    9. Wang, Anlun & Chen, Yinghe & Wei, Jianguang & Li, Jiangtao & Zhou, Xiaofeng, 2023. "Experimental study on the mechanism of five point pattern refracturing for vertical & horizontal wells in low permeability and tight oil reservoirs," Energy, Elsevier, vol. 272(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Song & Yu Tang & Yao Wang & Ruiyang Xie & Jianjun Liu, 2022. "Pore-Scale Numerical Simulation of CO 2 –Oil Two-Phase Flow: A Multiple-Parameter Analysis Based on Phase-Field Method," Energies, MDPI, vol. 16(1), pages 1-24, December.
    2. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    3. Zhao, Xin & Geng, Qi & Zhang, Zhen & Qiu, Zhengsong & Fang, Qingchao & Wang, Zhiyuan & Yan, Chuanliang & Ma, Yongle & Li, Yang, 2023. "Phase change material microcapsules for smart temperature regulation of drilling fluids for gas hydrate reservoirs," Energy, Elsevier, vol. 263(PB).
    4. Rui Song & Ping Zhang & Xiaomin Tian & Famu Huang & Zhiwen Li & Jianjun Liu, 2022. "Study on Critical Drawdown Pressure of Sanding for Wellbore of Underground Gas Storage in a Depleted Gas Reservoir," Energies, MDPI, vol. 15(16), pages 1-18, August.
    5. Liu, Qiang & Li, Jialong & Liang, Bing & Liu, Jianjun & Sun, Weiji & He, Jie & Lei, Yun, 2023. "Complex wettability behavior triggering mechanism on imbibition: A model construction and comparative study based on analysis at multiple scales," Energy, Elsevier, vol. 275(C).
    6. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).
    7. Song, Rui & Liu, Jianjun & Yang, Chunhe & Sun, Shuyu, 2022. "Study on the multiphase heat and mass transfer mechanism in the dissociation of methane hydrate in reconstructed real-shape porous sediments," Energy, Elsevier, vol. 254(PC).
    8. Song, Rui & Sun, Shuyu & Liu, Jianjun & Yang, Chunhe, 2021. "Pore scale modeling on dissociation and transportation of methane hydrate in porous sediments," Energy, Elsevier, vol. 237(C).
    9. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Visualization of interactions between depressurization-induced hydrate decomposition and heat/mass transfer," Energy, Elsevier, vol. 239(PC).
    10. Yuxuan Zhou & Shugang Li & Yang Bai & Hang Long & Yuchu Cai & Jingfei Zhang, 2023. "Joint Characterization and Fractal Laws of Pore Structure in Low-Rank Coal," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    11. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    12. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    13. Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
    14. Yang, Min & Liu, Qi & Zhao, Hongsheng & Li, Ziqiang & Liu, Bing & Li, Xingdong & Meng, Fanyong, 2014. "Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor," Energy, Elsevier, vol. 68(C), pages 385-398.
    15. Zhan, Honglei & Qin, Fankai & Chen, Sitong & Chen, Ru & Meng, Zhaohui & Miao, Xinyang & Zhao, Kun, 2022. "Two-step pyrolysis degradation mechanism of oil shale through comprehensive analysis of pyrolysis semi-cokes and pyrolytic gases," Energy, Elsevier, vol. 241(C).
    16. Procesi, M. & Cantucci, B. & Buttinelli, M. & Armezzani, G. & Quattrocchi, F. & Boschi, E., 2013. "Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)," Applied Energy, Elsevier, vol. 110(C), pages 104-131.
    17. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media," Energy, Elsevier, vol. 226(C).
    18. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    19. Nzihou, Ange & Stanmore, Brian & Lyczko, Nathalie & Minh, Doan Pham, 2019. "The catalytic effect of inherent and adsorbed metals on the fast/flash pyrolysis of biomass: A review," Energy, Elsevier, vol. 170(C), pages 326-337.
    20. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222021156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.