IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs0360544222012439.html
   My bibliography  Save this article

A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem

Author

Listed:
  • Rizk-Allah, Rizk M.
  • Hassanien, Aboul Ella
  • Snášel, Václav

Abstract

Combined heat and power economic dispatch (CHPED) is a challenging important optimization task in the economic operation of power systems that aims to minimize the production cost by scheduling the generation and heat outputs to committed units. The interdependency of heat and power production of the CHPED task exhibits non-convexity and non-linear natures in its modeling and optimization. Therefore, this paper introduces a novel hybrid approach comprising chameleon swarm algorithm (CSA) and mayfly optimization (MO), named CSMO, for solving the CHPED problem. The proposed CSMO algorithm has a better capability to evade from the trapping in local optima with faster rate of convergence pattern than the traditional CSA. Also the proposed CSMO algorithm employs the MO’ phase to assist the CSA to search based on deeper exploration/exploitation capabilities as MO utilizes two populations of male and female mayflies with crossover-based matting process. The effectiveness of the proposed CSMO algorithm is validated on CEC 2017 benchmark functions and two systems of the CHPED problem. The obtained results are compared with some successful optimizers. The simulation outcomes are portrayed based on the number of occasions where CSMO performs superior/equal/inferior to the other optimizers by considering the smaller mean values obtained by each algorithm for all test suites. Accordingly, it is exposed that the occasions achieved by the proposed CSMO are 29/1/0, 30/0/0, 30/0/0, 28/2/0, and 30/0/0 against some implemented algorithms, i.e., ISA, GOA, GBO, EO, and the original CSA. Similarly, the number of occasions achieved by the proposed CSMO are 30/0/0, 30/0/0, 30/0/0, 30/0/0, 30/0/0, 29/1/0, and 22/2/6 when the simulations are portrayed against some competitors from literature including the PSO, FA, FFPSO, HPSOFF, HFPSO, HGSO, and Q-SCA, respectively. Furthermore, the results of total cost found by CSMO are 9257.07 $/h for system 1 and 10094.25 $/h for system 2 of the CHPED problem, with percentage of improvement 0.02% and 14.42% on the original CSA, respectively. In addition, further assessments based on the Wilcoxon test, and convergence characteristic are reported. Based on the recorded results, it is portrayed that the CSMO can efficiently deal with the CEC 2017 benchmark functions and CHPED problem.

Suggested Citation

  • Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222012439
    DOI: 10.1016/j.energy.2022.124340
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124340?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    2. Rong, Aiying & Lahdelma, Risto, 2007. "An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning," European Journal of Operational Research, Elsevier, vol. 183(1), pages 412-431, November.
    3. Sadeghian, H.R. & Ardehali, M.M., 2016. "A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on Benders decomposition," Energy, Elsevier, vol. 102(C), pages 10-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Gang & Yang, Rui & Wei, Guo, 2023. "Hybrid chameleon swarm algorithm with multi-strategy: A case study of degree reduction for disk Wang–Ball curves," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 709-769.
    2. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    3. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    2. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    3. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    4. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    5. Nazari-Heris, M. & Mohammadi-Ivatloo, B. & Gharehpetian, G.B., 2018. "A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2128-2143.
    6. Yang, Qiangda & Liu, Peng & Zhang, Jie & Dong, Ning, 2022. "Combined heat and power economic dispatch using an adaptive cuckoo search with differential evolution mutation," Applied Energy, Elsevier, vol. 307(C).
    7. Urazel, Burak & Keskin, Kemal, 2023. "A new solution approach for non-convex combined heat and power economic dispatch problem considering power loss," Energy, Elsevier, vol. 278(PB).
    8. Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Siano, Pierluigi, 2020. "Optimal generation scheduling of large-scale multi-zone combined heat and power systems," Energy, Elsevier, vol. 210(C).
    9. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    11. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    12. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    13. Loau Al-Bahrani & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2021. "Solving the Real Power Limitations in the Dynamic Economic Dispatch of Large-Scale Thermal Power Units under the Effects of Valve-Point Loading and Ramp-Rate Limitations," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    14. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    15. Donghui Wang & Chunming Liu, 2019. "Combination Optimization Configuration Method of Capacitance and Resistance Devices for Suppressing DC Bias in Transformers," Energies, MDPI, vol. 12(9), pages 1-13, May.
    16. Mei, Fei & Zhang, Jiatang & Lu, Jixiang & Lu, Jinjun & Jiang, Yuhan & Gu, Jiaqi & Yu, Kun & Gan, Lei, 2021. "Stochastic optimal operation model for a distributed integrated energy system based on multiple-scenario simulations," Energy, Elsevier, vol. 219(C).
    17. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    18. Elattar, Ehab E., 2019. "Environmental economic dispatch with heat optimization in the presence of renewable energy based on modified shuffle frog leaping algorithm," Energy, Elsevier, vol. 171(C), pages 256-269.
    19. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    20. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s0360544222012439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.