IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222011501.html
   My bibliography  Save this article

A combined thermal and electrical performance evaluation of low concentration photovoltaic systems

Author

Listed:
  • Dellicompagni, Pablo Roberto
  • Heim, Dariusz
  • Knera, Dominika
  • Krempski-Smejda, Michał

Abstract

Due to the expectations of improving the overall efficiency of photovoltaic installation, the increase solar irradiation that could be converted into electricity should be considered as an alternative solution for existing PV technologies. Low-concentration photovoltaic systems such as reflective surfaces or Fresnel micro lens plates were chosen for this study because they were economically justified and easy to install and maintain. The low concentration systems were studied theoretically and experimentally under sunny and cloudy weather conditions. After the initial optimization of the system geometry and construction, both electrical and thermal performances were evaluated and compared with a reference PV panel. In addition, the effect of additional irradiation as well as panel temperature was studied for a specific period using thermography and digital image techniques. It was revealed that the highest improvement in energy performance was achieved by the panel with reflective surfaces, while the Fresnel plate considered here slightly decreased this performance in comparison with the reference case. The consideration ends with an economic analysis of both systems in the case of free-standing PV installation and a list of recommendations are presented, based on the empirical results. The highest improvement of energy performance can be achieved by the implementation of reflective surfaces, about 20% of the average daily global efficiency, and 15% on electrical production. In the case of the Fresnel micro lens, a decrease in both global efficiency and electricity production is observed, 8% and 21%, respectively. Regarding the temperature of PV panels, significant overheating was not registered; about 45–55 °C for the entire experimental test.

Suggested Citation

  • Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011501
    DOI: 10.1016/j.energy.2022.124247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222011501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Heim, D. & Knera, D., 2021. "A novel photometric method for the determination of reflected solar irradiance in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    4. Dominika Knera & Pablo Roberto Dellicompagni & Dariusz Heim, 2021. "Improvement of BIPV Efficiency by Application of Highly Reflective Surfaces at the Building Envelope," Energies, MDPI, vol. 14(21), pages 1-17, November.
    5. Narkwatchara, Piya & Ratanatamskul, Chavalit & Chandrachai, Achara, 2021. "Performance analysis of electricity generation from grid-connected photovoltaic system using All-Sky Index for Smart City projects in Thailand," Renewable Energy, Elsevier, vol. 171(C), pages 315-327.
    6. Novelli, Nick & Phillips, Kenton & Shultz, Justin & Derby, Melanie M. & Salvas, Ryan & Craft, Jesse & Stark, Peter & Jensen, Michael & Derby, Stephen & Dyson, Anna, 2021. "Experimental investigation of a building-integrated, transparent, concentrating photovoltaic and thermal collector," Renewable Energy, Elsevier, vol. 176(C), pages 617-634.
    7. Sebastijan Seme & Bojan Štumberger & Miralem Hadžiselimović & Klemen Sredenšek, 2020. "Solar Photovoltaic Tracking Systems for Electricity Generation: A Review," Energies, MDPI, vol. 13(16), pages 1-24, August.
    8. Xie, W.T. & Dai, Y.J. & Wang, R.Z. & Sumathy, K., 2011. "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2588-2606, August.
    9. Chen, Haiping & Zhang, Heng & Li, Mingjie & Liu, Haowen & Huang, Jiguang, 2018. "Experimental investigation of a novel LCPV/T system with micro-channel heat pipe array," Renewable Energy, Elsevier, vol. 115(C), pages 773-782.
    10. Hassan, Qusay, 2021. "Evaluation and optimization of off-grid and on-grid photovoltaic power system for typical household electrification," Renewable Energy, Elsevier, vol. 164(C), pages 375-390.
    11. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    12. Malik, Prashant & Chandel, Shyam Singh, 2020. "Performance enhancement of multi-crystalline silicon photovoltaic modules using mirror reflectors under Western Himalayan climatic conditions," Renewable Energy, Elsevier, vol. 154(C), pages 966-975.
    13. Wang, Gang & Wang, Fasi & Shen, Fan & Jiang, Tieliu & Chen, Zeshao & Hu, Peng, 2020. "Experimental and optical performances of a solar CPV device using a linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 146(C), pages 2351-2361.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. PraveenKumar, Seepana & Agyekum, Ephraim Bonah & Kumar, Abhinav & Velkin, Vladimir Ivanovich, 2023. "Performance evaluation with low-cost aluminum reflectors and phase change material integrated to solar PV modules using natural air convection: An experimental investigation," Energy, Elsevier, vol. 266(C).
    2. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    3. Liang, Kai & Zhang, Heng & Chen, Haiping & Gao, Dan & Liu, Yang, 2021. "Design and test of an annular fresnel solar concentrator to obtain a high-concentration solar energy flux," Energy, Elsevier, vol. 214(C).
    4. Li, Guiqiang & Lu, Yashun & Shittu, Samson & Zhao, Xudong, 2020. "Scale effect on electrical characteristics of CPC-PV," Energy, Elsevier, vol. 192(C).
    5. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    6. Saim Memon & Khawaja Noman Tahir, 2018. "Experimental and Analytical Simulation Analyses on the Electrical Performance of Thermoelectric Generator Modules for Direct and Concentrated Quartz-Halogen Heat Harvesting," Energies, MDPI, vol. 11(12), pages 1-17, November.
    7. Nawaz Edoo & Robert T. F. Ah King, 2021. "Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant," Energies, MDPI, vol. 14(23), pages 1-22, December.
    8. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    9. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    10. Vassiliades, C. & Savvides, A. & Buonomano, A., 2022. "Building integration of active solar energy systems for façades renovation in the urban fabric: Effects on the thermal comfort in outdoor public spaces in Naples and Thessaloniki," Renewable Energy, Elsevier, vol. 190(C), pages 30-47.
    11. Lu, Yashun & Li, Guiqiang, 2023. "Potential application of electrical performance enhancement methods in PV/T module," Energy, Elsevier, vol. 281(C).
    12. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    14. Mohammed W. Baidas & Rola W. Hasaneya & Rashad M. Kamel & Sultan Sh. Alanzi, 2021. "Solar-Powered Cellular Base Stations in Kuwait: A Case Study," Energies, MDPI, vol. 14(22), pages 1-26, November.
    15. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
    16. Wang, Yunjie & Yang, Huihan & Chen, Haifei & Yu, Bendong & Zhang, Haohua & Zou, Rui & Ren, Shaoyang, 2023. "A review: The development of crucial solar systems and corresponding cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    17. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    18. David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    19. Diogo Cabral & Abolfazl Hayati & João Gomes & Hossein Afzali Gorouh & Pouriya Nasseriyan & Mazyar Salmanzadeh, 2023. "Experimental Electrical Assessment Evaluation of a Vertical n-PERT Half-Size Bifacial Solar Cell String Receiver on a Parabolic Trough Solar Collector," Energies, MDPI, vol. 16(4), pages 1-21, February.
    20. Tibúrcio, B.D. & Liang, D. & Almeida, J. & Garcia, D. & Catela, M. & Costa, H. & Vistas, C.R., 2022. "Tracking error compensation capacity measurement of a dual-rod side-pumping solar laser," Renewable Energy, Elsevier, vol. 195(C), pages 1253-1261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222011501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.