IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas036054422201074x.html
   My bibliography  Save this article

Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes

Author

Listed:
  • Theologou, Konstantinos
  • Mertz, Rainer
  • Laurien, Eckart
  • Starflinger, Jörg

Abstract

This publication provides a dataset of 54 experiments, carried out with supercritical CO2 (sCO2) in two heated horizontal pipes with inner diameters of 4 and 8 mm at a pressure of approximately 7.75 MPa. The mass fluxes were set to 400 and 800 kg/m2s and the heat flux was varied from 30 to 130 kW/m2, resulting in a heat to mass flux ratio of 38–225 J/kg. The influences of the inner pipe diameter, the Reynolds number and the heat to mass flux ratio on the thermal stratification were studied. Temperature differences up to 90 K between the bottom and the top of the pipe have been detected. By varying the bulk fluid inlet temperature, the thermal inflow lengths have been quantified for a fully developed temperature stratification with up to 180 inner pipe diameters. The Petukhov and Richardson buoyancy criteria show that the experimental results are strongly influenced by buoyancy. For the Jackson buoyancy criterion, a new threshold of higher than 160 is proposed. The validation of four empirical Nusselt correlations shows that the Bishop correlation has the lowest total average deviation of 52%, especially for the bottom site of both pipes with an average deviation of 29%.

Suggested Citation

  • Theologou, Konstantinos & Mertz, Rainer & Laurien, Eckart & Starflinger, Jörg, 2022. "Experimental investigations on heat transfer of CO2 under supercritical pressure in heated horizontal pipes," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s036054422201074x
    DOI: 10.1016/j.energy.2022.124171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201074X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei, Xianliang & Zhang, Jun & Gou, Lingtong & Zhang, Qian & Li, Huixiong, 2019. "Experimental study on convection heat transfer of supercritical CO2 in small upward channels," Energy, Elsevier, vol. 176(C), pages 119-130.
    2. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    3. Liu, Yaping & Wang, Ying & Huang, Diangui, 2019. "Supercritical CO2 Brayton cycle: A state-of-the-art review," Energy, Elsevier, vol. 189(C).
    4. Wang, Dabiao & Tian, Ran & Zhang, Yue & Li, LanLan & Ma, Yuezheng & Shi, Lin & Li, Hui, 2019. "Heat transfer investigation of supercritical R134a for trans-critical organic Rankine cycle system," Energy, Elsevier, vol. 169(C), pages 542-557.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiangtao & Zhai, Yuling & Wang, Hua & Li, Zhouhang, 2023. "Heat transfer performance of supercritical R134a in a U-bend vapor generator for transcritical ORC system," Energy, Elsevier, vol. 276(C).
    2. Wang, Yuan & Ren, Jing-Jie & Bi, Ming-Shu, 2023. "Analysis on the heat transfer performance of supercritical liquified natural gas in horizontal tubes during regasification process," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    2. Aofang Yu & Wen Su & Li Zhao & Xinxing Lin & Naijun Zhou, 2020. "New Knowledge on the Performance of Supercritical Brayton Cycle with CO 2 -Based Mixtures," Energies, MDPI, vol. 13(7), pages 1-23, April.
    3. Wang, Shengpeng & Zhang, Yifan & Li, Hongzhi & Yao, Mingyu & Peng, Botao & Yan, Junjie, 2020. "Thermohydrodynamic analysis of the vertical gas wall and reheat gas wall in a 300 MW supercritical CO2 boiler," Energy, Elsevier, vol. 211(C).
    4. Haicai Lyu & Han Wang & Qincheng Bi & Fenglei Niu, 2022. "Experimental Investigation on Heat Transfer and Pressure Drop of Supercritical Carbon Dioxide in a Mini Vertical Upward Flow," Energies, MDPI, vol. 15(17), pages 1-14, August.
    5. Marco Bicchi & Michele Marconcini & Ernani Fulvio Bellobuono & Elisabetta Belardini & Lorenzo Toni & Andrea Arnone, 2023. "Multi-Point Surrogate-Based Approach for Assessing Impacts of Geometric Variations on Centrifugal Compressor Performance," Energies, MDPI, vol. 16(4), pages 1-21, February.
    6. Sleiti, Ahmad K. & Al-Ammari, Wahib A., 2021. "Off-design performance analysis of combined CSP power and direct oxy-combustion supercritical carbon dioxide cycles," Renewable Energy, Elsevier, vol. 180(C), pages 14-29.
    7. Lingbo Zhu & Yiping Lu & Jianfei Tong & Tianjiao Liang & Youlian Lu & Weida Fu & Bin Wang & Yunan Zhang, 2021. "Sensitivity Analysis of Influencing Factors of Supercritical Methane Flow and Heat Transfer in a U-Tube," Energies, MDPI, vol. 14(18), pages 1-15, September.
    8. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    9. Tong, Yongjing & Duan, Liqiang & Yang, Ming & Pang, Liping, 2022. "Design optimization of a new supercritical CO2 single reheat coal-fired power generation system," Energy, Elsevier, vol. 239(PB).
    10. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    11. Zaharil, Hafiz Aman, 2021. "An investigation on the usage of different supercritical fluids in parabolic trough solar collector," Renewable Energy, Elsevier, vol. 168(C), pages 676-691.
    12. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    13. Rafał Kowalski & Szymon Kuczyński & Mariusz Łaciak & Adam Szurlej & Tomasz Włodek, 2020. "A Case Study of the Supercritical CO 2 -Brayton Cycle at a Natural Gas Compression Station," Energies, MDPI, vol. 13(10), pages 1-18, May.
    14. Andrés Meana-Fernández & Juan M. González-Caballín & Roberto Martínez-Pérez & Francisco J. Rubio-Serrano & Antonio J. Gutiérrez-Trashorras, 2022. "Power Plant Cycles: Evolution towards More Sustainable and Environmentally Friendly Technologies," Energies, MDPI, vol. 15(23), pages 1-27, November.
    15. Yang, Yiping & Huang, Yulei & Jiang, Peixue & Zhu, Yinhai, 2020. "Multi-objective optimization of combined cooling, heating, and power systems with supercritical CO2 recompression Brayton cycle," Applied Energy, Elsevier, vol. 271(C).
    16. Ma, Xiaofeng & Jiang, Peixue & Zhu, Yinhai, 2022. "Dynamic simulation model with virtual interfaces of supercritical working fluid heat exchanger based on moving boundary method," Energy, Elsevier, vol. 254(PB).
    17. Zhang, Lianjie & Deng, Tianrui & Klemeš, Jiří Jaromír & Zeng, Min & Ma, Ting & Wang, Qiuwang, 2021. "Supercritical CO2 Brayton cycle at different heat source temperatures and its analysis under leakage and disturbance conditions," Energy, Elsevier, vol. 237(C).
    18. Alharbi, Sattam & Elsayed, Mohamed L. & Chow, Louis C., 2020. "Exergoeconomic analysis and optimization of an integrated system of supercritical CO2 Brayton cycle and multi-effect desalination," Energy, Elsevier, vol. 197(C).
    19. Sleiti, Ahmad K. & Al-Ammari, Wahib & Ahmed, Samer & Kapat, Jayanta, 2021. "Direct-fired oxy-combustion supercritical-CO2 power cycle with novel preheating configurations -thermodynamic and exergoeconomic analyses," Energy, Elsevier, vol. 226(C).
    20. Alenezi, A. & Vesely, L. & Kapat, J., 2022. "Exergoeconomic analysis of hybrid sCO2 Brayton power cycle," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s036054422201074x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.