IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222009847.html
   My bibliography  Save this article

Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system

Author

Listed:
  • Pashchenko, Dmitry
  • Mustafin, Ravil
  • Karpilov, Igor

Abstract

Ammonia is one of the prospective alternatives to hydrocarbon fuels. Currently, there are projects for developing of ammonia fired gas turbines up to 40 MW. The addition of thermochemical exhaust gas heat recuperation systems to ammonia-fired gas turbines could be a promising way to increase their efficiency. In this paper, the concept of an ammonia-fired chemically recuperated gas turbine (CRGT) is thermodynamically analyzed. Gas turbine with thermochemical recuperation by ammonia decomposition is analyzed via Aspen HYSYS for a wide range of operating parameters: turbine inlet temperature of 700–1300 °C, the pressure of 6–21 bar. The thermochemical exhaust heat recuperation system is recovering the exhaust heat in a reformer (for the endothermic reaction of ammonia decomposition), a heater (to preheat ammonia to the temperature of the decomposition reaction), and a regasifier (for regasification of liquid ammonia). The thermochemical exhaust heat recuperation system makes it possible to recover up to 43% of exhaust heat. The maximum efficiency of CRGT is observed at 9 bar for Tin = 700 °C; 12 bar at Tin = 800 °C; 15 bar at Tin = 900 °C; 18 bar at Tin = 1000 °C. In the temperature range above Tin > 1000 °C, when the pressure rises above 15 bar, the efficiency does not increase significantly.

Suggested Citation

  • Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009847
    DOI: 10.1016/j.energy.2022.124081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222009847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choudhary, Tushar & Sanjay,, 2017. "Thermodynamic assessment of SOFC-ICGT hybrid cycle: Energy analysis and entropy generation minimization," Energy, Elsevier, vol. 134(C), pages 1013-1028.
    2. Verkhivker, Gregoriy & Kravchenko, Vladimir, 2004. "The use of chemical recuperation of heat in a power plant," Energy, Elsevier, vol. 29(3), pages 379-388.
    3. Chen, Xu & Li, Zhongshu & Gallagher, Kevin P. & Mauzerall, Denise L., 2021. "Financing carbon lock-in in developing countries: Bilateral financing for power generation technologies from China, Japan, and the United States," Applied Energy, Elsevier, vol. 300(C).
    4. Mardani, Moloud & Tsolakis, Athanasios & Nozari, Hadi & Martin Herreros, Jose & Wahbi, Ammar & Sittichompoo, Sak, 2021. "Synergies in renewable fuels and exhaust heat thermochemical recovery in low carbon vehicles," Applied Energy, Elsevier, vol. 302(C).
    5. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    6. Cha, Junyoung & Jo, Young Suk & Jeong, Hyangsoo & Han, Jonghee & Nam, Suk Woo & Song, Kwang Ho & Yoon, Chang Won, 2018. "Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications," Applied Energy, Elsevier, vol. 224(C), pages 194-204.
    7. Pashchenko, Dmitry, 2021. "Industrial furnaces with thermochemical waste-heat recuperation by coal gasification," Energy, Elsevier, vol. 221(C).
    8. Luo, Shihua & Hu, Weihao & Liu, Wen & Xu, Xiao & Huang, Qi & Chen, Zhe & Lund, Henrik, 2021. "Transition pathways towards a deep decarbonization energy system—A case study in Sichuan, China," Applied Energy, Elsevier, vol. 302(C).
    9. Sadeghi, Mohsen & Chitsaz, Ata & Marivani, Parisa & Yari, Mortaza & Mahmoudi, S.M.S., 2020. "Effects of thermophysical and thermochemical recuperation on the performance of combined gas turbine and organic rankine cycle power generation system: Thermoeconomic comparison and multi-objective op," Energy, Elsevier, vol. 210(C).
    10. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Estevez & Francisco J. López-Tenllado & Laura Aguado-Deblas & Felipa M. Bautista & Antonio A. Romero & Diego Luna, 2023. "Current Research on Green Ammonia (NH 3 ) as a Potential Vector Energy for Power Storage and Engine Fuels: A Review," Energies, MDPI, vol. 16(14), pages 1-33, July.
    2. Bai, Zhang & Yuan, Yu & Kong, Debin & Zhou, Shengdong & Li, Qi & Wang, Shuoshuo, 2023. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Off-design operation performance," Applied Energy, Elsevier, vol. 348(C).
    3. Su, Bosheng & Huang, Yupeng & Wang, Yilin & Huang, Zhi & Yuan, Shuo & Huang, Qiteng & Xu, Zhilong & Lin, Feng, 2023. "Novel ammonia-driven chemically recuperated gas turbine cycle based on dual fuel mode," Applied Energy, Elsevier, vol. 343(C).
    4. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    5. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Carlos Arnaiz del Pozo & Ángel Jiménez Álvaro & Schalk Cloete & Jose Antonio García del Pozo Martín de Hijas, 2023. "The Potential of Chemically Recuperated Power Cycles in Markets with High Shares of Variable Renewables," Energies, MDPI, vol. 16(20), pages 1-22, October.
    7. Liaw, Kim Leong & Ong, Khai Chuin & Mohd Ali Zar, Muhammad Aliff B. & Lai, Wen Kang & Muhammad, M. Fadhli B. & Firmansyah, & Kurnia, Jundika C., 2023. "Experimental and numerical investigation of an innovative non-combustion impulse gas turbine for micro-scale electricity generation," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Thermochemical recuperation by steam methane reforming as an efficient alternative to steam injection in the gas turbines," Energy, Elsevier, vol. 258(C).
    3. Pashchenko, Dmitry, 2022. "Natural gas reforming in thermochemical waste-heat recuperation systems: A review," Energy, Elsevier, vol. 251(C).
    4. Victor-Gallardo, Luis & Quirós-Tortós, Jairo, 2023. "Techno-economic comparison of centralized and distributed power generation to support large-scale transport electrification in Costa Rica," Transport Policy, Elsevier, vol. 131(C), pages 120-138.
    5. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    6. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    7. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    8. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    9. Jan-Philipp Sasse & Evelina Trutnevyte, 2023. "A low-carbon electricity sector in Europe risks sustaining regional inequalities in benefits and vulnerabilities," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035," Energy, Elsevier, vol. 282(C).
    11. Brown, T. & Reichenberg, L., 2021. "Decreasing market value of variable renewables can be avoided by policy action," Energy Economics, Elsevier, vol. 100(C).
    12. Ning Ren & Xiufan Zhang & Decheng Fan, 2022. "Influencing Factors and Realization Path of Power Decarbonization—Based on Panel Data Analysis of 30 Provinces in China from 2011 to 2019," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    13. Mariusz Pyra, 2023. "Simulation of the Progress of the Decarbonization Process in Poland’s Road Transport Sector," Energies, MDPI, vol. 16(12), pages 1-21, June.
    14. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    15. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    16. Che, Shuai & Wang, Jun & Chen, Honghang, 2023. "Can China's decentralized energy governance reduce carbon emissions? Evidence from new energy demonstration cities," Energy, Elsevier, vol. 284(C).
    17. Buberger, Johannes & Kersten, Anton & Kuder, Manuel & Eckerle, Richard & Weyh, Thomas & Thiringer, Torbjörn, 2022. "Total CO2-equivalent life-cycle emissions from commercially available passenger cars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Shirley Thompson, 2023. "Strategic Analysis of the Renewable Electricity Transition: Power to the World without Carbon Emissions?," Energies, MDPI, vol. 16(17), pages 1-34, August.
    19. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    20. Andrew Chapman & Hidemichi Fujii, 2022. "The Potential Role of Flying Vehicles in Progressing the Energy Transition," Energies, MDPI, vol. 15(19), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222009847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.